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1 Introduction

Much of the existing literature on auctions with independent private valuations makes

the following assumption: Each bidder’s valuation for the item is distributed from a unique

prior F and this distribution is common knowledge among the bidders in the auction. This

paper relaxes this assumption and studies auctions. There are two reasons that the unique

prior assumption is weakened in this paper. First, there are real-world examples in which

this assumption seems strong. House auctions, merger and acquisition auctions, art auctions,

and online auctions are some of these examples. Since the bidders in these auctions rarely

learn the auction environment due to the lack of repeated participation, they don’t have

enough information to have a unique prior. The unique prior assumption is accordingly

not suitable for these type of auctions. Second, robustness of the results under the unique

prior assumption can be examined by weakening the assumption. Many well-known results

from existing literature such as the revenue equivalence theorem or the equilibria of a

certain auction format depend crucially on the unique prior assumption. Since Wilson

(1989) emphasized the importance of studying mechanisms in a wide class of environments,

robustness has been one of the key questions in the study of mechanisms, including auctions.

Because of these two reasons, the unique prior assumption is relaxed in this paper and it

is assumed that the bidders in an auction face ambiguity about the probability distribution

from which each bidder’s valuation is drawn and that they are ambiguity averse. The aim

of this paper is to study the first-price and the second-price auctions under this relaxed

assumption. The paper especially focuses on the first-price auctions because the outcomes
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of the second-price auctions are trivial.

One of the earliest studies on ambiguity was conducted by Knight (1921). In his book,

Knight differentiates ambiguity from risk. Risk refers to situations where probabilities

are known; ambiguity, on the other hand, describes situations where probabilities are not

known.1 Ellsberg (1961) subsequently shows in his paper that if an agent faces ambiguity

about a state of nature and is ambiguity averse, then the decision-making behavior of

the agent cannot be explained by a unique belief. A decision-making rule of ambiguity

averse agents is axiomatized by Gilboa and Schmeidler (1989). They introduce the maxmin

expected utility model with multiple priors in which an agent has a set of multiple priors,

instead of a unique prior, about a state of nature. In this model, the ambiguity of the agent is

captured by the set of priors, and the agent’s utility from choosing an action is its minimum

expected utility across all beliefs in her prior set. She then selects the action that maximizes

this minimum expected utility. The model developed by Gilboa and Schmeidler (1989) is

adopted in this paper to explain the bidding behavior of bidders who face ambiguity. In this

paper, it is assumed that the bidders in the auction do not know the probability distribution

from which the other bidders’ valuations are drawn; that is, they face ambiguity about the

valuation distribution. It is also assumed that they are ambiguity averse. According to the

maxmin expected utility model with multiple priors, the ambiguity of each bidder in the

auction is represented by a set of multiple beliefs. Each bidder evaluates a bid based on its

minimum expected utility across her priors and chooses the best bid.

1Knight (1921) uses the term ”uncertainty” instead of ”ambiguity” in his book.
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Some researchers have investigated auctions with ambiguity averse bidders by employ-

ing the maxmin expected utility decision rule; these researchers include Bose, Ozdenore,

and Pape (2006); Bodoh-Creed (2012); and Lo (1998). One of the main differences between

my paper and these papers is that my paper focuses on studying how the outcome of the

auction changes as the level of ambiguity faced by the bidders changes. My paper quantifies

the ambiguity level of each bidder from her prior set. Then, it analyzes how the bidders’

ambiguity level affects their bids and the seller’s expected revenue from the auction. This is

an interesting question for the seller of the auction. If the seller knows how his expected

revenue is impacted by the bidders’ ambiguity level, then he can increase his expected

revenue by adjusting the bidders’ information level.

The following are the main results of the paper. A maxmin Bayesian Nash equilibrium

of the first price auction is identified. Then, it is shown that the bidders’ equilibrium bids

and the seller’s expected revenue from the auction increase as the bidders’ ambiguity level

increases if the distribution of the bidders’ valuations satisfies the monotone inverse hazard

rate condition. Moreover, the paper shows that the first price auction generates a larger

expected revenue for the seller than the second price auction and that the revenue gap

between the two auction formats increases as the level of ambiguity faced by the bidders

increases.

To derive the equilibrium of the auction (Proposition 1), I use the maxmin Bayesian

Nash equilibrium as the solution concept. Since this is Nash equilibrium, each bidder’s

bidding strategy is the best response against the other bidders’ strategies according to the
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maxmin expected utility decision rule. Prior studies that have analyzed games with agents

facing ambiguity by using the maxmin Bayesian Nash equilibrium solution concept include

Bose, Ozdenoren and Pape (2006), Bodoh-Creed (2012), and Wolitzky (2016).

This paper defines the prior set of each bidder as follows. It is assumed that there is

a probability distribution from which each bidder’s valuation is independently drawn and

that each bidder’s prior set is a set of probability distributions in the neighborhood of this

true valuation distribution. The Levy metric, an intuitive metric on the set of probability

distributions that measures the maximum distance between the graphs of two cumulative

distribution functions, is used to define the neighborhood. Then, the level of ambiguity that

each bidder faces is represented by the size of the neighborhood. Because the ambiguity

level is captured by a parameter in this prior set definition, it is convenient to analyze how

the bidders’ ambiguity level affects the outcome of the auction. Among the probability

distributions in a bidder’s prior set defined by the Levy metric, we can consider two distribu-

tions: the lower bound distribution and the upper bound distribution. In the prior set, there is

a distribution that first-order stochastically dominates all other distributions in the set. I use

the term “the lower bound distribution” to denote this distribution because its cumulative

distribution function values are lower than those of any other distributions in the set. If a bid-

der’s belief about another bidder’s valuation is the lower bound distribution, then compared

to the other beliefs in her prior set, she believes that the other bidders’ valuations for the

item are higher. In the prior set, there is also a distribution that is first-order stocahstically

dominated by all other distributions in the set. I use the term “the upper bound distribution”
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for this distribution. Any probability distribution whose cumulative distribution function

values are between those of the lower bound and upper bound distributions are contained in

the bidder’s prior set.

Consider a maxmin expected utility problem faced by a bidder. Regardless of the

bidder’s bid, her worst belief, the expected payoff minimizing belief, in her prior set is the

probability distribution that first-order stochastically dominates all the other distributions. If

the bidder has this belief, then she believes that the other bidders’ valuations for the item

are high and there is a small chance of her winning the item. Thus, this is the bidder’s

worst belief. Because the worst belief does not depend on the bid the bidder chooses, the

maxmin Bayesian Nash equilibrium with multiple priors is equal to the Bayesian Nash

equilibrium based on the worst belief. Thus, the maxmin Bayesian Nash equilibrium of

the first-price auction is obtained by using the results of previous research on the Bayesian

Nash equilibrium in the first-price auction conducted by Riley and Samuelson (1981) and

Monteiro (2009). Riley and Samuelson (1981) derive the equilibrium of the auction when

the bidders’ valuations are drawn from a continuous distribution, and Monteiro (2009)

generalizes this result to the case of distributions with discontinuities.

This paper analyzes how the bidders’ bidding behavior and the seller’s expected revenue

change as the level of ambiguity faced by the bidders changes (Proposition 2, 3). Under

the assumption that the true valuation distribution satisfies the monotone inverse hazard

rate condition, each bidder in the auction submits a higher bid in response to an increased

level of ambiguity. Consider a bidder facing ambiguity. If she faces a higher level of
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ambiguity, then her worst belief is more pessimistic than the worst belief from the lower

level of ambiguity. That is, if the bidder’s ambiguity level increases, then she believes that

the other bidders’ valuations for the item are higher. Thus, to compete against the other

bidders with higher valuations, she submits a higher bid. Due to the higher bids of the

bidders, the seller’s expected revenue is also higher. It follows that the seller’s expected

revenue from the auction increases as the level of bidders’ ambiguity about the distribution

of the other bidders’ valuations increases.

The first price auction can be compared to the second price auction when bidders have

ambiguity (Proposition 4). If bidders do not face ambiguity, there is a well-known result

that the first price auction and the second price auction generate the same expected revenue

for the seller. However, the first price auction generates greater expected revenue than the

second price auction if there is ambiguity. Moreover, the difference in revenues between

these two auction formats becomes larger as the bidders’ ambiguity level rises. Consider

a second price auction. If the bidders don’t face ambiguity, it is a dominant strategy for

them to bid their own valuations. It is still a dominant strategy even when the bidders

face ambiguity because dominant strategies don’t depend on the priors that agents have.

Therefore, the seller’s expected revenue from the second price auction does not depend on

whether the bidders have ambiguity or not. As we noted, however, the seller’s expected

revenue from the first price auction increases with the increases in bidders’ ambiguity level.

That is, the sensitivity of the auction format to ambiguity is different for the first price and

second price auctions, and this leads to the revenue gap between these two auction formats.
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The paper is organized as follows. Section 2 discusses related literature. The model

and informational assumptions are introduced and each bidder’s prior set is defined in

section 3. In section 4, a maxmin Bayesian Nash equilibrium of the first price auction

is identified. Changes in bidders’ bidding behavior and the seller’s expected revenue in

relation to changes in the bidders’ ambiguity level are analyzed in section 5. Section 6

compares the results from the first price auction with those of the second price auction.

Section 7 and 8 conclude the paper by offering future research directions.

2 Related literature

There is an existing literature that studies auctions where the bidders face ambiguity

about the probability distribution from which the valuations of the other bidders are drawn

and they are ambiguity averse. Lo (1998) examines first price and second price sealed-bid

auctions using the maxmin expected utility model, showing that the revenue for the seller

is greater from the first price auctions than the second price auctions. One of the main

differences between my paper and Lo (1998) is that my paper examines how the bidders’

ambiguity level affects the outcome of the auction. This is possible because each bidder’s

ambiguity level can be defined by a parameter determining the bidder’s prior set in my

paper. Bose, Ozdenore, and Pape (2006) and Bodoh-Creed (2012) study the optimal auction

problem and characterize the revenue maximizing auction. My work focuses on one auction

format, the first price auction. The first price auctions are not in their set of optimal auctions.
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However, they mention that their optimal auctions are rarely observed in the real world

unlike the first price auctions.

Other papers have adopted the maxmin expected utility model to explain the decision-

making behavior of agents facing ambiguity. Bergemann and Schlag (2011) investigate the

monopoly pricing problem when the monopolist has ambiguity about the demand distribu-

tion. I adopt their definition of a prior set to define the bidders’ prior sets. I use the Levy

metric to define the neighborhood of the true distribution, which is how Bergemann and

Schlag (2011) define the monopolist’s prior set. However, my paper analyzes the bidders’

optimal bidding problems in the auction while Bergemann and Schlag (2011) analyze the

monopolist’s optimal pricing problem. Wolitzky (2016) studies properties of mechanisms

using the maxmin expected utility model. He works on mechanisms in general, however,

my work focuses on auctions.

Riley and Samuelson (1981) and Monteiro (2009) study the Bayesian Nash equilibrium

of the first price auction when the bidders don’t have ambiguity. I use their results to derive

a maxmin Bayesian Nash equilibrium of the auction.

3 Model

2.1. Auction

There is an indivisible item to be auctioned. Suppose that there are n risk-neutral bidders

and the set of the bidders is defined as N = {1, 2, . . . , n}. For each bidder i ∈ N , let
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vi ∈ Vi ⊆ R+ denote her valuation for the item where Vi is the set of bidder i’s possible

valuation for the item, bi ∈ Bi denote her bid where Bi is the set of bidder i’s possible bids,

and b−i ≡ (b1, . . . , bi−1, bi+1, . . . , bn) denote a profile of the bids with bidder i removed.

Consider a first price sealed-bid auction with seller’s reserve price r. In the auction, a

bidder with the highest bid wins the item and pays her bid, the highest bid, as long as her

bid is higher than or equal to the reserve price r. Assume that each highest bidder wins

the item with the same probability in case of a tie, Vi = [0, 1], and Bi = [0, 1] for each

bidder i ∈ N . Let pi(b1, . . . , bn) denote the probability that bidder i wins the item and

ti(b1, . . . , bn) denote bidder i’s expected payment to the seller when (b1, . . . , bn) is a profile

of bids submitted by the bidders. Then, the allocation rule and the transfer rule of the auction

are defined as follows: for each i ∈ N and for each bid profile b = (bi, b−i) ∈ [0, 1]n,

pi(bi, b−i) =



1 if bi > bmax−i and bi ≥ r,

1

k
if bi = bmax−i and bi ≥ r,

0 if bi < bmax−i or bi < r,

ti(bi, b−i) =



bi if bi > bmax−i and bi ≥ r,

bi
k

if bi = bmax−i and bi ≥ r,

0 if bi < bmax−i or bi < r.

where bmax−i ≡ max
j 6=i

bj and k ≡ |{l ∈ N | bl = bi}|. Thus, the payoff of bidder i with

valuation vi is

ui(bi, b−i; vi) = vi pi(bi, b−i)− ti(bi, b−i)

=



vi − bi if bi > bmax−i and bi ≥ r,

vi − bi
k

if bi = bmax−i and bi ≥ r,

0 if bi < bmax−i or bi < r.
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From this point, it is assumed that the auction in this paper is the first price auction with

reserve price r, Vi = [0, 1] and Bi = [0, 1] for all i = 1, 2, . . . , n unless stated otherwise.

2.2. Information

Bidder i’s valuation for the item, vi ∈ [0, 1], is her private information and unknown to

the other bidders and the seller. Assume that vi for each bidder i is independently drawn

from the continuously differentiable and strictly increasing distribution F0 on [0,1] whose

density function is f0. Suppose that the bidders don’t know the distribution, that is, they

face ambiguity about the distribution and also that they are ambiguity averse . Each bidder

knows that the valuations of the other bidders are identically and independently distributed

from a distribution but she doesn’t know the distribution. The ambiguity of each bidder can

be represented by a set of probability distributions. We assume that each bidder’s set of

beliefs about another bidder’s valuation is the set of all probability distributions on [0,1] in

ε-neighborhood of the distribution F0. Following Bergemann and Schlag (2011), the Levy

metric on the set of probability distributions is used to define the ε-neighborhood of F0.2

Then, bidder i’s set of beliefs is given by

Fε(F0) = {F ∈ ∆[0, 1] |F0(v − ε)− ε ≤ F (v) ≤ F0(v + ε) + ε ∀v ∈ [0, 1]}.

The Levy metric measures the maximum distance between the graphs of two cumulative

distribution functions along a 45◦ direction. In the belief set defined by the Levy metric,

there are two probability distributions on [0, 1], F0(v − ε)− ε and F0(v + ε) + ε, that form

2In their paper on monopoly pricing, Bergemann and Schlag (2011) use a generalized version of Levy
metric to define the seller’s set of beliefs about the demand function. See Huber and Ronchetti (2009) on
robust statistics for the definition of the Levy metric.
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a boundary of the set. The graph of each of these distributions is a parallel shift of the graph

of the value distribution, F0, along a 45◦ direction. Then, any distribution on [0, 1] whose

graph is located between the graphs of these two distributions is in the bidder’s belief set.

Figure 1 depicts each bidder’s set of beliefs when F0 follows a uniform distribution on [0, 1].

Any distribution on [0, 1] whose graph falls in the shaded area in the figure is included in

the bidder’s belief set. In our definition of the belief set using the Levy metric, the size of

the neighborhood, ε, represents the level of ambiguity that the bidder has. A higher value

of ε means the higher level of ambiguity of the bidder because the set of beliefs is larger.

Because each bidder’s ambiguity level is captured by a parameter, it is convenient to analyze

how the bidders’ ambiguity level affects the outcome of the auction. It is assumed that

the auction rule, the reserve price r, and each bidder’s set of beliefs Fε(F0) are common

knowledge.

2.3. Maxmin expected utility bidders

To analyze the behavior of bidders facing ambiguity, I adopt the maxmin expected utility

decision rule that is axiomatized by Gilboa and Schmeidler (1989). Under the maxmin

expected utility decision rule, each bidder calculates the minimum expected payoff across all

beliefs for each of her possible bids. Then, she chooses the bid that maximizes the minimum

expected payoff. The mathematical formulation of the bidder’s minimum expected payoff

maximization problem is provided in the next subsection.

2.4. The game-theoretic auction and maxmin Bayesian Nash equilibrium
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2ε(
= F−10 (ε) + ε

)

F0(v + ε) + ε

F0(v)

F0(v − ε)− ε

Figure 1: A bidder’s set of beliefs when F0 is a uniform distribution on [0, 1].

Consider the auction as a game. Each bidder’s strategy is a bidding function bi : Vi → Bi.

Let v−i ≡ (vj)j 6=i = (v1, . . . , vi−1, vi+1, . . . , vn) denote a vector of bidders’ valuations with

bidder i removed. Consider bidder i with the set of beliefs Fε(F0) on another bidder’s

valuation. Suppose that bidder i bids bi, her valuation for the item is vi and bj(·) is bidder

j’s bidding strategy for all j 6= i. Bidder i’s minimum expected payoff from bidding bi is

defined by

min
F∈Fε(F0)

∫
v−i∈[0,1]n−1

ui

(
bi,
(
bj(vj)

)
j 6=i ; vi

) ∏
j 6=i

dF (vj).

Bidder i’s minimum expected payoff maximization problem can be defined as follows:

max
bi∈[0,1]

min
F∈Fε(F0)

∫
v−i∈[0,1]n−1

ui

(
bi,
(
bj(vj)

)
j 6=i ; vi

) ∏
j 6=i

dF (vj).
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By solving this problem for each valuation vi ∈ [0, 1], bidder i’s minimum expected payoff

maximizing bid, bi(vi), when the other bidders’ bidding strategies are
(
bj(·)

)
j 6=i can be

identified. We can say that this bidding function bi(·) is bidder i’s best response against the

other bidders’ bidding functions
(
bj(·)

)
j 6=i.

In this paper, I adopt the maxmin Bayesian Nash equilibrium as the solution concept

to investigate the behavior of the bidders in the auction.3 A strategy profile
(
b∗i (·)

)n
i=1

is a

maxmin Bayesian Nash equilibrium if each bidder’s bidding strategy is her best response

against the other bidders’ bidding strategies. That is, for each i ∈ N and for each vi ∈ [0, 1],

b∗i (vi) ∈ arg max
bi∈[0,1]

min
F∈Fε(F0)

∫
v−i∈[0,1]n−1

ui

(
bi,
(
b∗j(vj)

)
j 6=i ; vi

) ∏
j 6=i

dF (vj).

4 A Maxmin Bayesian Nash Equilibrium

Assume that the seller’s reserve price is at least F−10 (ε) + ε. That is,

r ≥ F−10 (ε) + ε.

Note that F−10 (ε) + ε is the smallest value of the support of the lower bound distribution in

the bidders’ prior set.4 This is assumed because otherwise the bidder with her valuation less

than F−10 (ε) + ε would update her prior set based on the valuation.

Consider bidder i with valuation vi ∈ [0, 1]. Suppose that the profile of the other bidders’
3Bose, Ozdenoren, and Pape (2006), Bodoh-Creed (2012), and Wolitzky (2016) use the maxmin Bayesian

Nash equilibrium to analyze the decision-making behavior of the agents facing ambiguity.
4The lower bound distribution denotes the probability distribution that first-order stochastically dominates

all other distributions in the prior set. See Figure 1 for an example.
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strategies is
(
bj(·)

)
j 6=i and each bj(·) is a strictly increasing function. Then, bidder i’s

minimum expected payoff maximization problem is defined as follows:

max
bi∈[0,1]

min
F∈Fε(F0)

(vi − bi) ∗ Pr (i wins the item).

That is,

max
bi∈[0,1]

min
F∈Fε(F0)

(vi − bi) ∗ Pr (bi ≥ bj(vj) ∀j 6= i).5

We can make two observations from this maxmin problem. First, bidder i’s optimal bid

bi, the minimum expected payoff maximizing bid, is less than or equal to her valuation, vi,

because her expected payoff would be negative otherwise. Second, for each of her bids,

bi ∈ [0, 1], we can find the expected payoff minimizing belief, F ∈ Fε(F0). From the

objective function of the maxmin problem, the expected payoff function, we can obtain that

(vi − bi) ∗ Pr (bi ≥ bj(vj) ∀j 6= i)

= (vi − bi) ∗ Pr (vj ≤ b−1j (bi) ∀j 6= i)

= (vi − bi) ∗
∏
j 6=i

F
(
b−1j (bi)

)
.

Thus, for given bi ∈ [0, 1], the expected payoff minimizing belief minimizes bidder i’s

probability of winning,
∏
j 6=i

F
(
b−1j (bi)

)
. Bidder i’s probability of winning is a product of

cumulative probabilities, F
(
b−1j (bi)

)
. Thus, a belief minimizing each of these cumulative

probabilities is the expected payoff minimizing belief. Therefore, when each bidder’s set of

priors is given by Fε(F0) = {F ∈ ∆[0, 1] |F0(v − ε) − ε ≤ F (v) ≤ F0(v + ε) + ε ∀v ∈
5In this formulation, I don’t consider the cases of ties for convenience’ sake. This does not affect the claim

and the results I am going to derive in the paper.
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[0, 1]}, the expected payoff minimizing belief is F ∗ satisfying

F ∗(v) =



0 if v < F−10 (ε) + ε,

F0(v − ε)− ε if F−10 (ε) + ε ≤ v < 1,

1 if v ≥ 1.

We can see that F ∗ is continuous on [F−10 (ε) + ε, 1) and discontinuous at 1. Notice also

that F ∗ is bidder i’s expected payoff minimizing belief no matter which bid bi ∈ [0, 1] she

chooses.

Example 1. If F0 is a uniform distribution on [0, 1], then the distribution FU∗ ∈ Fε(F0)

satisfying

FU∗(v) =



0 if v < 2ε,

v − 2ε if 2ε ≤ v < 1,

1 if v ≥ 1.

is bidder i’s expected payoff minimizing belief. In Figure 1, the distribution function on the

bottom boundary of the shaded area corresponds to this belief.

Consider bidder i’s maxmin expected payoff problem:

max
bi∈[0,1]

min
F∈Fε(F0)

(vi − bi) ∗
∏
j 6=i

F
(
b−1j (bi)

)
.
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Because F ∗ obtained above is the expected payoff minimizing belief for any bid bi, this

maxmin expected payoff problem is equivalent to the following problem:

max
bi∈[0,1]

(vi − bi) ∗
∏
j 6=i

F ∗
(
b−1j (bi)

)
.

This is bidder i’s expected payoff maximization problem when her belief on another bidder’s

valuation is F ∗. From the equivalence of these two problems, it follows that the maxmin

Bayesian Nash equilibrium of the first price auction with bidders having sets of priorsFε(F0)

is equal to the Bayesian Nash equilibrium of the first price auction with bidders having

common prior F ∗. There are many previous literature studying Bayesian Nash equilibrium

of the first price auction with a common prior and thus, we can find out the maxmin Bayesian

Nash equilibrium from the results of those literature. Riley and Samuelson (1981) study the

Bayesian Nash equilibrium of the first price auction when bidders have the common belief

F that is strictly increasing and differentiable. They show that the equilibrium bidding

function is given by

bi(vi) = vi −
∫ vi
v=r

(F (v))n−1dv

(F (vi))n−1
(1)

for vi ≥ r where r is the seller’s reserve price. Monteiro (2009) generalizes this result and

identifies the Bayesian Nash equilibrium when the common prior F has discontinuities. He

shows that the equilibrium bidding strategy is equal to (1) at the continuous points of F and

a mixed strategy at the discontinuities of F . The expected payoff minimizing belief, F ∗, in

our paper has one discontinuity at v = 1. Thus, we can find out a maxmin Bayesian Nash

equilibrium of the first price auction as follows by using the result of Monteiro (2009).
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Proposition 1. Consider a first price sealed-bid auction with the seller’s reserve price

r satisfying r ≥ F−10 (ε) + ε. Suppose that each bidder has a set of priors Fε(F0) about

another bidder’s valuation for the item. Then, a profile of mixed strategies
(
µi(·)

)n
i=1

is a

maxmin Bayesian Nash equilibrium of the auction if for each i ∈ {1, . . . , n},

µi(vi) =


pure strategy, b∗i (vi) = vi −

∫ vi
v=r

(
F0(v − ε)− ε

)n−1
dv(

F0(vi − ε)− ε
)n−1 if vi ∈ [r, 1),

mixed strategy, G if vi = 1,

where G :
[
bF

∗
i (1−), bF

∗
i (1)

]
→
[
0, 1
]

is a cumulative distribution function satisfying

G(b) =
F0(1− ε)− ε

1− (F0(1− ε)− ε)

(
− 1 +

(
1− bF ∗

i (1−)

1− b

) 1
n−1
)
,

F ∗ is the expected payoff minimizing prior, and

bF
∗

i (vi) = vi −
∫ vi
v=r

(
F ∗(v)

)n−1
dv(

F ∗(vi)
)n−1 for vi ∈ [r, 1].

Remark 1. In the maxmin Bayesian Nash equilibrium, a bidder plays the mixed strategy

G only when her valuation is equal to 1. Because the true distribution F0 is continuous, the

event that the bidder’s valuations for the item is equal to 1 has measure 0. Thus, we focus

on the bidder’s pure strategy, vi −
∫ vi
v=r

(
F0(v − ε)− ε

)n−1
dv(

F0(vi − ε)− ε
)n−1 , from this point. Let b∗i (vi)

denote this pure strategy for vi ∈ [r, 1).

Example 1. (continued.) Suppose that the true distribution F0 is a uniform distribution

on [0, 1], that is, F0(v) = v for v ∈ [0, 1]. Then, bidder i’s maxmin Bayesian Nash
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equilibrium bidding strategy for vi ∈ [r, 1) is given by

b∗i (vi) = vi −
∫ vi
v=r

(v − 2ε)n−1 dv

(vi − 2ε)n−1
=

n− 1

n
vi +

2ε

n
+

1

n

(r − 2ε)n

(vi − 2ε)n−1
.

If the bidders don’t have any ambiguity about the other bidders’ valuations (ε = 0), then

each bidder’s Bayesian Nash equilibrium bidding strategy is bi(vi) =
n− 1

n
vi +

rn

nvn−1i

.

5 Changes in Bidders’ Ambiguity Level

From the maxmin Bayesian Nash equilibrium of the first price auction we obtained in

Proposition 1, we can study how each bidder’s equilibrium bidding behavior changes as her

level of ambiguity changes. The higher value of ε implies the larger set of beliefs, Fε(F0),

and thus, the higher level of ambiguity that each bidder has. It can be shown that each

bidder bids higher in response to the higher level of ambiguity if the probability distribution

of the bidders’ valuations, F0, satisfies a certain condition.

Definition 1. The distribution F satisfies the monotone inverse hazard rate condition

if
f(v)

F (v)
is non-increasing in v.

Then, we can obtain the following result:

Proposition 2. Suppose that F0 satisfies the monotone inverse hazard rate condition.

Then, each bidder with her valuation for the item vi ∈ (r, 1) submits a strictly higher bid in

response to an increased level of ambiguity.

Proof. From the Proposition 1, it follows that bidder i’s maxmin Bayesian Nash
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equilibrium bidding strategy is

b∗i (vi) = vi −
∫ vi
v=r

(
F0(v − ε)− ε

)n−1
dv(

F0(vi − ε)− ε
)n−1 .

If we take the derivative of the function with respect to ε, then we obtain that

db∗i (vi)

dε
=

∫ vi
v=r

(n− 1)
(
F0(v − ε)− ε

)n−2 (
F0(vi − ε)− ε

)n−1 (
f0(v − ε) + 1

)
dv(

F0(vi − ε)− ε
)2n−2

−
∫ vi
v=r

(n− 1)
(
F0(v − ε)− ε

)n−1 (
F0(vi − ε)− ε

)n−2 (
f0(vi − ε) + 1

)
dv(

F0(vi − ε)− ε
)2n−2

=

∫ vi

v=r

(n− 1)
(
F0(v − ε)− ε

)n−2 (
F0(vi − ε)− ε

)n−2
∗
[(
F0(vi − ε)− ε

) (
f0(v − ε) + 1

)
−
(
F0(v − ε)− ε

) (
f0(vi − ε) + 1

)]
dv(

F0(vi − ε)− ε
)2n−2 . (2)

Consider the following term in the brackets in (2):

[(
F0(vi − ε)− ε

) (
f0(v − ε) + 1

)
−
(
F0(v − ε)− ε

) (
f0(vi − ε) + 1

)]
.

It is given that v ≤ vi. It can be shown that the value of this term is strictly positive if

v < vi. There are two possible cases to consider: f0(v − ε) ≥ f0(vi − ε) and f0(v −

ε) < f0(vi − ε). Consider the case that f0(v − ε) ≥ f0(vi − ε). Because F0 is strictly

increasing, it follows that F0(vi − ε) − ε > F0(v − ε) − ε. Thus, we can obtain that(
F0(vi−ε)−ε

) (
f0(v−ε)+1

)
−
(
F0(v−ε)−ε

) (
f0(vi−ε)+1

)
> 0. Consider the other case

that f0(v− ε) < f0(vi− ε). Because F0 satisfies the monotone inverse hazard rate condition,

it follows that
f0(v − ε)
F0(v − ε)

≥ f0(vi − ε)
F0(vi − ε)

, that is, F0(vi−ε)f0(v−ε)−F0(v−ε)f0(vi−ε) ≥ 0.
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Thus, we obtain that

F0(vi − ε)f0(v − ε)− F0(v − ε)f0(vi − ε) ≥ 0

⇒
(
F0(vi − ε)− ε

)
f0(v − ε)−

(
F0(v − ε)− ε

)
f0(vi − ε) > 0

⇒
(
F0(vi − ε)− ε

)(
f0(v − ε) + 1

)
−
(
F0(v − ε)− ε

)(
f0(vi − ε) + 1

)
> 0.

The second inequality is obtained from the supposition that f0(v−ε) < f0(vi−ε). The third

inequality is obtained from strictly increasing F0. By investigating the two possible cases, we

have that the value of the term,
(
F0(vi−ε)−ε

)(
f0(v−ε)+1

)
−
(
F0(v−ε)−ε

)(
f0(vi−ε)+1

)
,

is strictly positive if v < vi. Therefore, the value of the integral of (2) is strictly positive.�

Example 1. (continued.) If F0 is a uniform distribution on [0, 1], then its inverse hazard

rate function,
1

v
, is decreasing in v. Therefore, we can apply Proposition 2 and say that each

bidder responds to increased level of ambiguity with a higher bid when F0 is a uniform

distribution.

Because the bidders increase their bids in response to an increased level of ambi-

guity, the seller’s expected revenue from the auction also increases.

Proposition 3. Suppose that F0 satisfies the monotone inverse hazard rate condition.

Then, the seller’s expected revenue from the auction when bidders face ambiguity is greater

than the one when bidders don’t face ambiguity. Moreover, the seller’s expected revenue

increases as the level of ambiguity faced by the bidders increases.

Proof. Suppose that each bidder in the auction has a prior set Fε(F0) about the other

bidders’ valuations. Let bε∗(·) denote the maxmin Bayesian Nash equilibrium bidding
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strategy of each bidder we obtained in Proposition 1. Then, the seller’s expected revenue is

defined by

R(ε) =

∫ 1

v=r

bε∗(v)n
(
F0(v)

)n−1
f0(v) dv.

Consider two numbers, ε1 ∈ [0, 1] and ε2 ∈ [0, 1], satisfying ε1 < ε2. Note that a bidder

having prior set Fε2(F0) faces the higher level of ambiguity than a bidder having prior set

Fε1(F0). Note also that if ε1 = 0, then the prior set Fε1(F0) is a singleton and it implies that

the bidder does not have ambiguity. Because ε1 < ε2, it follows that bε1∗(v) < bε2∗(v) for all

v ∈ (r, 1) from the result of Proposition 2. Therefore, we can obtain that R(ε1) < R(ε2).�

6 A comparison with the second price auction

The first price auction is compared to another popular auction format, the second price

auction, when bidders have ambiguity about the probability distribution from which the

other bidders’ valuations for the item are drawn.

It can be shown that the bidders in the second price auction have an incentive to bid

their own valuations even when they face ambiguity. Consider the second price auction with

bidders facing no ambiguity. In this case, there is a well-known result that truthful bidding

from each bidder forms a dominant strategy equilibrium. Since it is a dominant strategy,

each bidder’s incentive for truthful bidding does not depend on her belief about the other

bidders’ valuations. Thus, even when the bidders face ambiguity and have multiple beliefs,

truthful bidding forms a dominant strategy equilibrium in the second price auction.
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The bidders in the second price auction always bid their true valuations, no matter

whether they have ambiguity or not about the distribution of the others’ valuations. Thus,

the seller’s expected revenue from the second price auction also does not depend on whether

the bidders face ambiguity or not. However, we know from proposition 3 that the seller’s

expected revenue from the first price auction increases as the bidders’ ambiguity level in

the auction increases. When bidders don’t face ambiguity, there is a well-known revenue

equivalence result between first price and second price auctions. From these results on the

seller’s expected revenue from two auction formats, we can obtain the following result:

Proposition 4. Consider a first price auction and a second price auction with the seller’s

reserve price r. Suppose that the true distribution, F0, from which each bidder’s valuation is

drawn satisfies the monotone inverse hazard rate condition, the bidders face ambiguity about

the distribution and they are ambiguity averse, and each bidder’s set of priors is Fε(F0).

Then the seller can obtain the higher expected revenue from the first price auction than

the second price auction. Moreover, the difference in expected revenues from two auction

formats increases as the level of ambiguity faced by the bidders increases.

7 Conclusion

This paper analyzes the first price auction where each bidder faces ambiguity about

the probability distribution from which the other bidders’ valuations are independently

drawn and is ambiguity averse. The maxmin expected utility model with multiple priors
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axiomatized by Gilboa and Schmeidler (1989) is used to solve the bidders’ optimal bidding

problems. The bidders’ equilibrium bidding functions and the seller’s expected revenue

from the auction are identified. Moreover, it is shown that the bidders’ equilibrium bids and

the seller’s expected revenue increase as the bidders’ ambiguity level increases. It is also

determined that the seller’s expected revenue from the first price auction is greater than that

of the second price auction when the bidders face ambiguity.

8 Future research directions

Asymmetry in bidders’ ambiguity levels. I assumed that the level of ambiguity is the

same for all bidders. As a next step, I plan to relax this assumption and assign different am-

biguity levels to bidders. Under these asymmetric ambiguity levels, studying the differences

between the bidders’ bidding strategies based on their ambiguity levels is a future research

direction.

Minimax regret decision rule. I used the maxmin expected utility decision rule. There

is another decision rule, the minimax regret model axiomatized by Stoye (2011), that

explains the decision-making behavior of agents with ambiguity. Exploring the bidders’

equilibrium bidding strategies and the seller’s revenue using this decision rule is another

future research topic.
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