Gains from Product Variety and the Local Business Cycle*

Laurien Gilbert
University of Michigan
November 29, 2017

Click for Most Recent Version of this Paper

Abstract

Net product entry is procyclical, which amplifies fluctuations in consumer welfare over the cycle if consumers have love for variety. Using barcode-level data covering grocery expenditures in 26 major cities, I establish that differences in city-level product entry are largely uncorrelated with local economic conditions. I provide evidence that city-level changes in product variety over the business cycle are driven instead by multi-city retailers who introduce new products simultaneously in all cities in which they operate. This suggests that product introduction by multi-city retailers can propagate business cycle shocks. To quantify the impact of this mechanism, I develop a quantitative model of retailer product choice that relates the welfare gains from product entry in each city to demand growth in every other city. The model implies that the contribution of other cities’ business cycle shocks to each city’s price level is proportional to the share of other cities in retailer revenue. Since the share of outside cities in retailer revenue is 63 percent in the average city, the impact of other cities’ shocks on product entry is substantial. The presence of multi-city retailers makes net product entry more correlated across cities than they would be if retailers operated in only one city. In a counterfactual in which retailers do operate in only one city, the variation in gains from new product entry across cities would be 47 percent higher than in the baseline.

JEL Codes: E31, E32, L11, R1
Keywords: Inflation, regional business cycles, new products

*I am grateful to Andrei Levchenko, Alan Deardorff, Javier Cravino and Dominick Bartelme for advising and support. Thanks also to the Federal Reserve Board of Governors for funding and support and to seminar participants at the Midwest Trade Conference for valuable comments. Email: legilb@umich.edu.
1 Introduction

Most analysis of consumer welfare focuses on intensive margin phenomena: changes in the prices of a common basket of goods due to factors such as productivity changes, monetary shocks, or strategic interactions between firms. However, major advances benefiting the consumer are often associated with new products: from home appliances and personal vehicles to mobile phones and personal computers. Recent work has shown that new products continue to make up a significant fraction of total consumer spending even over short horizons: Broda and Weinstein (2010) show that the procyclical entry of new product varieties amplifies real income fluctuations over the business cycle, a fact that typical measures of household welfare will fail to capture because they consider a fixed basket of goods. In addition, previous work has shown that product variety varies significantly across cities served by different retailers.¹

This paper shows that multi-city retailers propagate business cycle shocks across cities through the synchronized introduction of new products across the cities in which they operate. I begin by using scanner data to establish three empirical findings that indicate that net product entry at the city level is primarily related to the decisions of retailers who synchronize their introduction of products across cities. Second, I build a quantitative model of retailer product choice to measure how much transmission of the welfare effects of city-level business cycle shocks occurs through common retailers.

I first use barcode-store-level data from grocery retailers from Nielsen to study net product entry in 26 large US cities from 2006-2014. The data record revenue and average weekly prices at the barcode-store level. Because the scanner data set includes the universe of sales of barcoded products within participating retailer stores, the set of products in the data represents a complete picture of all varieties purchased by consumers at these stores.

Using the data, I document three findings that establish the role of retailers in explaining net product entry at the city level. First, I show that net product entry across cities varied from 9 to 15 percentage points during the period 2008-2010 and from 15 to 20 percent during the period 2011-2014, suggesting meaningful differences in the availability of new products to consumers across cities. Broda and Weinstein (2010) show that aggregate net product entry is procyclical. However, differences in city-level demand growth explain little of the cross-city variation. Alternative measures of the local business cycle such as local GDP growth, wage growth, or house price growth are also uncorrelated with city-level changes in local product variety.

Second, I find that retailers coordinate the introduction of new products across all cities in which they operate. Eighty-six percent of new products (by value) are introduced in all of a retailer’s markets within a one-year period. Variation at the retailer level explains most of the variation in net product entry across city-retailers. I decompose net product entry in each retailer-city into retailer and city components and find that the retailer component can account for 88 percent of the variation in net product entry in an average year.

Third, I find that the retailer’s decision to supply new products is strongly related to changes in total retailer sales. I measure changes in demand two ways. First, I use growth in the retailer’s sales across all markets as a direct measure of demand growth. I regress net product entry by the retailer in each city on growth in retailer sales and find a positive and significant relationship. However, the OLS estimate may be contaminated by simultaneity if the retailer experiences a productivity shock or by reverse causation if firms that introduce new products attract a significantly larger share of demand. In order to relate net product entry to a plausibly exogenous measure of changes in demand, I construct a measure of city-level demand growth weighted by the retailer’s share in each market and use it as an instrument for retailer sales growth. The identifying assumption is that changes in MSA-level grocery expenditure are independent of the supply decisions of any particular retailer. I find that a 10 percent increase in a retailer’s demand instrumented with the weighted demand growth measure is associated with a 3.6 percent change in new products by value introduced by the retailer.

In sum, the empirical findings show that there is significant variation in net product entry across cities, not driven by differences in local business cycles. Instead, I find that product entry occurs as the result of changes in the set of varieties offered by retailers in response to changes in their total sales. Product entry across a retailer’s markets is highly coordinated, suggesting that retailers introduce the same set of products across cities in response to changes in their combined sales. As a result, retailer product entry can act as a mechanism through which the welfare impact of business cycle shocks is transmitted across cities. An increase in demand in one city will motivate retailers operating in that city to introduce new products. Because they also receive the newly introduced products, all other cities served by those retailers will inherit part of the welfare gain associated with the demand growth experienced by just one city.

In order to measure the extent to which retailer product entry decisions transmit shocks across cities, I construct a quantitative model that I calibrate using the microdata. Multi-city retailers choose a set of products to offer to consumers. Because consumer preferences exhibit love for variety, retailers can increase their revenue by increasing the set of products they offer. However, retailers face a convex fixed cost associated with increasing their set of products. Consistent with the empirical finding that retailers introduce the same products across all markets, all fixed costs associated with the introduction of new products are paid nationally. The optimal number of products offered by the retailer will increase as a function of its total revenue.

City-level productivity shocks affect the number of available varieties through a change in demand in each of each retailer’s markets, prompting the retailer to change its product set. The same change in the number of products occurs within all the retailer’s stores, redistributing the welfare impact of city-level shocks across all cities in which the retailer operates. I derive analytical expressions that relate the welfare gains associated with new products to changes in demand in the cities in which the retailer operates and two parameters: the elasticity of demand governing the welfare contribution of new products and a parameter governing the curvature of the fixed cost function.
I calibrate the two key parameters of the model using the microdata. First, I calibrate the parameter governing the curvature of the fixed cost function to the observed elasticity of net product entry to demand growth. Second, I calibrate the elasticity of substitution across goods, which will determine the magnitude of the response of the price level to net product entry. I begin by using the barcode-level microdata to estimate microelasticities as in Feenstra (1994) and Broda and Weinstein (2010). I consolidate the set of microelasticities into a single ‘macro’-elasticity by matching the elasticity of city-level welfare gains to city-level net product entry. The ‘macro’-elasticity between goods is essentially a weighted average of the microelasticities, a calibration strategy that avoids the bias associated with estimating a macroelasticity directly.

I evaluate the model’s fit for city-level welfare gains from product entry by comparing them to welfare gains calculated using barcode-level microdata and find that the retailer model predicts city-level welfare gains well. I then decompose the model-generated gains from new products experienced in each city into a contribution coming from each other city. The model implies that the effect of outside demand shocks on each city’s net product entry is proportional to the share of retailer revenues generated in outside cities. The average city generates less than half of total revenues for the retailers operating in that city, suggesting that outside demand shocks can significantly affect net product entry in the average city. The model predicts that 63 percent of the welfare gains in the average city result from shocks in other cities.

The model implies that the impact of city-level demand growth on consumer welfare in each city depends on the extent of product market integration between cities. In order to quantify the extent to which the empirical distribution of retailers amplifies city-level differences in business cycle outcomes, I compare the baseline model to two counterfactual retailer distributions. At one extreme, if all retailers operated in only one market, the entry of new products would respond only to local demand growth. On the other, if all retailers operated nationally, the entry of new products would respond to the aggregate business cycle. I compare the variation of gains from new products across cities in the calibrated baseline model to these two polar counterfactuals in which I generate predictions for gains from net product entry. In the local counterfactual, I generate welfare predictions under a distribution of shares such that each operates in only one city. In the national counterfactual, I set market shares such that all retailers operate nationally.

I find that the variation in welfare gains across cities in the local counterfactual is 47 percent higher than in the baseline model. This suggests that multi-city retailers smooth the welfare gains from local demand shocks across cities. However, the observed distribution of retailers still results in city-level welfare gains that amplify differences in business cycle outcomes across cities. Under the counterfactual distribution of retailers in which all retailers operate nationally, there is no variation in city-level welfare gains from product entry. The fact that there is still considerable idiosyncratic variation across cities under the observed distribution of retailer shares is consistent with the observation that most food retailers are regional rather than national: retailer demand responds to a subset of all idiosyncratic city-level demand shocks.

This paper relates to a recent literature that has connected product variety to productivity.
growth and the business cycle. Bernard, Jensen and Schott (2010) and Aghion et al (2017) study the implications of new product creation for measured productivity. Broda and Weinstein (2010) and Erickson and Pakes (2011) consider the impact of product entry and exit on the measured consumer price level. I contribute to the literature by considering cyclical net product entry at the local level, I am able to measure the welfare impact of new products available to consumers in their own product markets.

A second related literature studies changes in the consumer price level over the cycle. Coibion, Gorodnichenko and Hong (2012) and Jaimovich (2017) find that consumer substitution across stores and product qualities represents a significant source of bias affecting measured consumer prices and their business cycle implications. Argente and Lee (2016) focus on the distributional implications of cyclical substitution. Gagnon and Lopez-Salido (2014) present evidence that local prices do not respond to local shocks. I incorporate the findings of this literature by allowing for substitution across retailers and echoes the implication that prices are not determined at the local level. My paper is the first in this literature to explicitly consider retailers as a source of inter-city business cycle propagation.

Finally, this paper contributes to an extensive literature that studies regional business cycles. Moretti (2011) provides a recent review of the literature on local labor markets. Hanson (2005) and Bartelme (2015) emphasize the role of regional market access in explaining regional economic outcomes. Asdrubali et al (1996), Stumpner (2014) and Caliendo et al (2017) consider mechanisms through which regional shocks propagate within the U.S. This paper presents a novel channel by which local shocks may be transmitted through the price level.

The rest of the paper is organized as follows. Section 2 describes the data. Section 3 presents empirical evidence that local product variety is determined by retailer product selection. Section 4 develops a model in which retailer product choice transmits demand shocks across cities. Section 5 describes how parameters of the model are calibrated to match moments in the data. Section 6 discusses the implications of the model for transmission of shocks across cities. Section 7 concludes.

2 Product Variety in Scanner Data

2.1 Data description

Data on consumer products come from the Nielsen Retail Scanner data for the period 2006-2014. The data contain average weekly prices and quantities for all UPC barcodes sold in participating stores across the United States along with descriptive information about the UPC created by Nielsen. Data are sent directly from the retailer or its parent company to Nielsen. Participating retailers include grocery, mass market, convenience and liquor stores, with the best coverage in the first

2These data are available through the Kilts Center for Marketing at the University of Chicago Booth School of Business.
two categories. The data cover a significant proportion of consumer spending on food at home, but the fraction of total food-at-home expenditures captured in the data does vary across cities due to differences in the share of local expenditure within participating retailers. I restrict my analysis to 26 metropolitan areas in the sample with populations above 2 million and expenditure coverage above 25 percent in grocery and mass market stores as reported by Nielsen. For convenience, I refer to metropolitan areas as ‘cities.’

This paper focuses on the entry and exit of final goods into retailers rather than entry and exit of retailers into city markets. Retailers freely select into providing data to Nielsen, making the data a noisy source of information about the entry and exit of individual grocery stores or retail chains. To avoid the issue of entry and exit of retailers themselves, I restrict the data to a sample that contains continuing retailers over each two-year horizon. For instance, retailers included in the sample for 2010 will include all retailers who also sold in 2008 and 2009 without change of ownership. These stores account for 60 percent of all expenditures in the Retail Scanner Data.

Because of the issues noted with interpreting entry and exit of retailers in the scanner data, I also consider the contribution of continuing retailers to total consumer expenditures using an alternate data source produced by Nielsen, the Homescan (HMS) data collected from household barcode scans. Because this data set records expenditures reported by the household at all retailers, not just those that share store-level data with Nielsen, it provides a more comprehensive look at the set of retailers available to the consumer in each city. In this data set, retailers that continue to sell over a two-year horizon account for 99 percent of expenditures in the average city-year, while retailers that continue to sell over the entire 2006-2014 period account for 96 percent. This suggests that retailer entry over the business cycle is not a quantitatively important phenomenon.

While the data contain both grocery and non-grocery UPCs, coverage is not uniform across categories. As an additional check on the data, I compare characteristics of the scanner data to the HMS data. I examine the revenue growth rates in each city-year for each product group as defined by Nielsen. In the HMS grocery categories, average revenue growth is 1.9 percent on average, while it is 4.2 percent in the non-grocery data. Revenue growth in grocery categories is 0.9 percent on average in the retail scanner data and 0.8 percent in non-grocery. The very low growth in non-grocery sales is likely the result of less reliable coverage in these categories: most retailers in the sample specialize in grocery products. I restrict my analysis to grocery categories (other than fresh produce and meats, which are less likely to have UPCs). These data account for 62 percent of expenditures in the retail scanner data and 68 percent of expenditures reported by households in the HMS data. Last, to screen for potential problems in data reporting, I restrict the sample to product categories that are available in all years within a retailer. This step eliminates about 0.5 percent of all expenditures in the sample.

3Mass market retailers carry the range of products commonly sold at grocery stores and non-grocery products, such as clothing or furniture.
4At least 40 percent of the US population lives within these metro areas according the 2010 Census.
5Nielsen classifies UPCs into nested categories in order of increasing detail: departments, product groups and product modules. A 14 ounce can of Dole peaches would be found in the canned peach module, the canned fruit group, and the dry goods department.
Table 1: Descriptive Statistics

<table>
<thead>
<tr>
<th>City</th>
<th>Number of Products</th>
<th>Number of Stores</th>
<th>Number of Retailers</th>
<th>Total Expenditures (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>197,893</td>
<td>1,651</td>
<td>13</td>
<td>2,746</td>
</tr>
<tr>
<td>Baltimore</td>
<td>208,079</td>
<td>1,559</td>
<td>15</td>
<td>4,556</td>
</tr>
<tr>
<td>Boston</td>
<td>183,186</td>
<td>2,110</td>
<td>15</td>
<td>4,854</td>
</tr>
<tr>
<td>Charlotte</td>
<td>175,999</td>
<td>1,263</td>
<td>13</td>
<td>2,077</td>
</tr>
<tr>
<td>Chicago</td>
<td>240,105</td>
<td>2,495</td>
<td>15</td>
<td>5,314</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>156,133</td>
<td>664</td>
<td>10</td>
<td>1,717</td>
</tr>
<tr>
<td>Columbus</td>
<td>177,728</td>
<td>604</td>
<td>9</td>
<td>1,611</td>
</tr>
<tr>
<td>Dallas</td>
<td>193,581</td>
<td>1,596</td>
<td>12</td>
<td>2,967</td>
</tr>
<tr>
<td>Denver</td>
<td>200,491</td>
<td>1,215</td>
<td>16</td>
<td>3,317</td>
</tr>
<tr>
<td>Detroit</td>
<td>156,999</td>
<td>1,207</td>
<td>8</td>
<td>2,034</td>
</tr>
<tr>
<td>Houston</td>
<td>186,473</td>
<td>1,560</td>
<td>9</td>
<td>2,550</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>206,582</td>
<td>3,014</td>
<td>14</td>
<td>8,277</td>
</tr>
<tr>
<td>Miami</td>
<td>142,462</td>
<td>963</td>
<td>9</td>
<td>1,245</td>
</tr>
<tr>
<td>New York</td>
<td>258,936</td>
<td>4,563</td>
<td>22</td>
<td>7,927</td>
</tr>
<tr>
<td>Orlando</td>
<td>155,209</td>
<td>1,174</td>
<td>13</td>
<td>986</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>227,422</td>
<td>2,447</td>
<td>19</td>
<td>4,059</td>
</tr>
<tr>
<td>Phoenix</td>
<td>193,467</td>
<td>1,349</td>
<td>11</td>
<td>3,433</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>200,881</td>
<td>958</td>
<td>11</td>
<td>1,607</td>
</tr>
<tr>
<td>Portland</td>
<td>167,338</td>
<td>648</td>
<td>10</td>
<td>2,029</td>
</tr>
<tr>
<td>Raleigh-Durham</td>
<td>181,228</td>
<td>1,119</td>
<td>12</td>
<td>1,905</td>
</tr>
<tr>
<td>Sacramento</td>
<td>162,833</td>
<td>734</td>
<td>12</td>
<td>1,769</td>
</tr>
<tr>
<td>San Diego</td>
<td>171,210</td>
<td>516</td>
<td>10</td>
<td>1,790</td>
</tr>
<tr>
<td>San Francisco</td>
<td>166,459</td>
<td>1,271</td>
<td>10</td>
<td>3,930</td>
</tr>
<tr>
<td>Seattle</td>
<td>174,884</td>
<td>1,080</td>
<td>10</td>
<td>3,572</td>
</tr>
<tr>
<td>Tampa</td>
<td>148,770</td>
<td>1,305</td>
<td>13</td>
<td>1,187</td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>206,276</td>
<td>801</td>
<td>15</td>
<td>1,773</td>
</tr>
</tbody>
</table>

Notes: Values in each column represent the average over the years of the sample, 2006-2014.
Table 2: Retailers by Number of Cities

<table>
<thead>
<tr>
<th>Cities</th>
<th>Number of Retailers</th>
<th>Average City Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>475</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>777</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>1,170</td>
</tr>
<tr>
<td>4-6</td>
<td>8</td>
<td>1,090</td>
</tr>
<tr>
<td>7-10</td>
<td>7</td>
<td>1,540</td>
</tr>
<tr>
<td>11+</td>
<td>9</td>
<td>3,060</td>
</tr>
</tbody>
</table>

Notes: The table reports the maximum number of cities in which the retailer sells between 2006-2014 and the average per-market sales (in millions) per year for those retailers.

Table 1 lists descriptive statistics by city in the final sample averaged over the years 2006-2014. Even after removing non-continuing stores, non-grocery UPCs and outlier product categories, the retail scanner data represent about twice as many products per city as the household scanner data collected by Nielsen over the same time period because products are included in the dataset if even one consumer purchases them from a participating retailer. These data include 18,629 stores corresponding to 71 retailers. Nielsen defines stores based on particular chain brands, rather than by parent company. In the analysis, I focus on the retail parent. Total expenditures in the final dataset used for analysis represent 80.3 billion dollars of grocery expenditure on average per year, or about 12.5 percent of all expenditures on food at home in the United States. The percentage of grocery expenditure in each city that is captured by the retail scanner data varies across cities, but expenditures are broadly increasing in city size. While the data only covers food expenditures, which make up about 10 percent of consumer expenditures each year, other categories of consumer expenditure likely exhibit gains from variety as well. Consumption of all non-durables accounts for about 22 percent of expenditures.

Most retailers in the data sell in only a fraction of all 26 cities of the data, but revenue per market increases with city size. Table 2 describes how many one-city and multi-city retailers there are in the data. While retailers operating in only one city make up almost one third of all retailers in the data, retailers that operate in multiple cities have significantly higher revenue per market.

This dataset captures expenditures at physical stores in each city in the sample, but consumers may have access to grocery products through online retailers. In principle, differences in the set of varieties available in local stores could be unimportant if consumers shop online, thereby access a common national set of varieties. During the period, expenditures at online retailers account for about 1 percent of all expenditures in the HMS data for any given year, suggesting that online retailers occupy a low share of grocery expenditure. Of course, it is possible both that online shopping is underreported compared to shopping at physical retailers and that the prevalence of

6The identities of retailers and parent companies in the sample are not released by Nielsen. One parent company ID may be associated with several retailer IDs. For example, XYZ Groceries, Inc. might have two types of retail location: XYZ Full and XYZ Express. These two chains would typically have different retailer IDs and the same parent ID. Some companies prefer to aggregate data to the parent-level before sending to Nielsen.

7Based on expenditure estimates from the Economic Research Service, USDA.
online grocery shopping has grown since 2014, the last year of the sample. In section 6.2, I consider how the transmission of business cycle shocks and consumer welfare would differ if all retailers operated nationally. Were online retailers to represent a increasingly large fraction of expenditures, outcomes would approach this counterfactual, in which entry of variety responds to aggregate demand because retailers are active in all cities.

2.2 Defining the Entry and Exit Horizon

In the retail scanner data, entry and exit of products must be inferred from the time series of UPC sales, since there are no data on goods held in inventory. Over short horizons, inference about product entry and exit is likely to be complicated by inventory considerations, partial year effects, and clearance sales. To lessen this ambiguity, I choose to consider the extensive margin over periods of at least two years. In particular, a product is counted as new in year \(t \) if it is sold in year \(t \), but not year \(t - 2 \). Similarly, a product is said to exit the market in year \(t \) if it is sold in \(t \) but not in \(t + 2 \). This timing convention allows direct comparison between the revenue of entering and exiting products in year \(t \). Because this time horizon implicitly allows a product to be counted as entering or exiting for two years, I annualize the net product entry rates obtained using the two-year horizon.

Considering the cost of keeping unsuccessful products on the shelf and the fact that many grocery products are subject to spoilage, it is unlikely that a product would remain unsold but in inventory for a year or longer. Similarly, the two-year horizon avoids the well-documented partial year problem: new products may enter partway through the year, making their sales hard to compare with those of existing products. The two year horizon also helps to avoid attributing a low expenditure weight to products that are initially less familiar to the consumer, resulting in low sales immediately after entry, or to those that go on clearance sale just before they are eliminated. These issues are likely to result in low revenue, but the resulting prices and expenditure will confound marketing or inventory considerations with the utility that the consumer derives from the product. After calculating entry and exit rates based on the two-year horizon, growth rates in this paper are annualized by dividing by two.

Using Homescan data from Nielsen over an earlier period, Broda and Weinstein (2010) choose to consider product entry over a longer four-year horizon: a product is counted as ‘entering’ in 2010 if it is sold in 2010 and not in 2006, regardless of sales in 2007, 2008 or 2009. They argue that the long horizon captures the revenue share of new products better than a short horizon, in which new products may not have realized their full potential sales. However, the long horizon also excludes any products that are sold for less than four years. More than 55 percent of products that are observed to enter the national market between 2006-2012 sell for three years or less. Nearly 15 percent of these products sell for less than two years. Because the Retail Scanner data offer a larger sample of consumer expenditures than the Homescan data, it is possible to use a shorter horizon.
3 Three Findings about Net Product Entry

This section documents three findings about city-level net product entry and the associated reduction in the price faced by consumers. First, I show that despite the aggregate procyclicality of net product entry, local business cycles do not appear to explain variation in net product entry at the city level. Using an approach similar to that in Broda and Weinstein (2010), I calculate implied welfare gains from net product entry and show that they are both sizable and variable across cities. The magnitude of city-level welfare gains is weakly related to local demand growth. Second, I show that retailers, rather than city demand conditions, appear to drive local net product entry. Third, I show that net product entry at the retailer level is strongly related to the retailer’s revenue growth stemming from demand shocks across all its markets.

3.1 City-level demand does not explain local net product entry

I use the Nielsen data to measure changes in the set of available products in each of 26 cities. Net product entry is pro-cyclical, but the extent of product variety changes across US cities varies considerably. Figure 1 displays the average net entry of new products by value each year over the period of the recession, 2008-2010, and the recovery, 2011-2014, against one-year-lagged city level expenditure growth over each period.\(^8\) The figure also plots a linear regression of average annual net product entry on average lagged city-level expenditure growth for each period. The relationship is positive but statistically insignificant: city-level expenditure growth does not appear

\(^8\)Net product entry exhibits a positive but insignificant relationship with contemporaneous consumption growth.
to explain variation in product entry across cities. While changes in expenditure growth in each city represent the most natural measure of business cycle movements in the Retail Scanner data, I also test the relationship between net product entry and other measures of the business cycle such as city-level GDP per capita growth, city-level wage growth, and changes in city-level house prices. Among these measures, lagged expenditure growth is most correlated with net product entry and the associated welfare gains. In what follows, I show that product entry is determined by retailers, rather than city-level shocks.

In order to understand how much new products matter for consumer welfare, it is necessary to take a stance on the consumer’s utility function. I follow Feenstra (1994) and Broda and Weinstein (2010) in assuming that consumers have CES preferences. A key characteristic of a CES price index is that all else equal, an increase in the number of products reduces the price level because consumers have a love for variety. For smaller elasticities of substitution, the negative effect of new products on the price level is larger.

Following Broda and Weinstein (2010), I assume that consumers have a three-tier utility function over goods. However, I also allow grocery retailers to be imperfect substitutes, while retailers in their model of consumption are perfect substitutes. Evidence from the literature on shopping behavior over the business cycle suggests that consumer shopping behavior is consistent with imperfect substitutability across retailers. Griffith et al. (2009) find that most households shop for groceries once or twice a week. Nevo and Wong (2015) and Coibion, Gorodnichenko and Hong (2015) find evidence that households increase shopping intensity during recessions, including store-switching, implying that there is a cost associated with substitution across retailers.

The tiers of the price index consist of UPCs aggregated to a brand-product ‘module’, brand-product modules aggregated to a coarser product ‘group’, product groups aggregated within a retailer, and retailers aggregated to total grocery consumption. The utility function first aggregates consumption over goods within a retailer, then aggregates across retailers.

Following Broda and Weinstein (2010), I estimate elasticities of substitution for each tier of the utility function following a GMM approach that relies on the identifying assumption that demand and supply shocks are uncorrelated. In Appendix A, I discuss this approach in more detail and report statistics on the elasticities I calculate. I find a median cross-UPC elasticity of 6.23, consistent with magnitudes in the literature. In the appendix, I also discuss an alternate approach to estimating elasticities developed by Hausman (1996) that uses price changes in other markets as an instrument for supply shocks. As in other studies, I find a much smaller cross-UPC elasticity of 1.93 using the Hausman approach. To maintain comparability with Broda and Weinstein (2010), I report estimates using their approach in the main text. Note that using smaller elasticities would produce systematically larger estimates of the welfare gains from new products, thereby amplifying the differences in outcomes across cities as well.

For brevity, I describe the price level of a generic tier \(x \) of the four-tier utility function, with

9 Product modules represent fine product categories (‘Canned Peaches’ vs ‘Canned Pineapple’) while product groups represent broad product categories (‘Canned Fruit’ vs ‘Coffee’).
In the absence of shocks to demand for \(x \), the two-year growth in the exact price index, \(\pi_{x,t} \) for each tier \(x \) can be written as

\[
\pi_{x,t} = \prod_{v \in \Omega_t^*} \left(\frac{p_{v,t}}{p_{v,t-2}} \right)^{\omega_{vt}} \left(\frac{\lambda_{x,t}}{\lambda_{x,t-2}} \right)^{\frac{1}{\sigma_x-1}}.
\] (1)

Inflation is a composite of two components: the change in the prices of elements \(v \) of the set of common elements \(\Omega_t^* \), which are sold in both \(t \) and \(t-2 \), and a correction reflecting the value of net product entry. The contribution of each common element is weighted by Sato (1976)-Vartia (1976) weights defined as:

\[
\omega_{vt} = \frac{s_{vt} - s_{vt-1}}{\sum_{v \in \Omega_t^*} s_{vt} - s_{vt-1}}.
\]

The term \(\lambda_{x,t} \) is defined as the share of expenditures on common elements in the set \(\Omega_t^* \), a subset of all products sold in the period \(\Omega_t^* \):

\[
\lambda_{x,t} = \frac{\sum_{v \in \Omega_t^*} p_{v,t} c_{v,t}}{\sum_{v \in \Omega_t^*} p_{v,t} c_{v,t}}.
\]

Imagine that all else equal, a new product is introduced and consumed in period \(t \) that was not available in period \(t-2 \). In this case, \(\lambda_{x,t} < 1 \), and \(\lambda_{x,t-2} = 1 \). Because the share of common expenditures has fallen between the two periods, this lowers the price level. The degree to which the entry of new products lowers the price level is regulated by the elasticity of substitution \(\sigma_x \) between goods: when goods are more substitutable, entry has a smaller impact on the price level.

Because new products lower the price level, consumer welfare rises. Average annual implied welfare gains from new products under this model of consumer demand are displayed in Figure 2.
Table 3: Extensive Margin Entry and Exit Patterns by Number of Initial Markets

<table>
<thead>
<tr>
<th>Markets 2009</th>
<th>Product Enters All Retailer’s Markets (%)</th>
<th>Product Exits All Retailer’s Markets (%)</th>
<th>Share of Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>16</td>
</tr>
<tr>
<td>2-13</td>
<td>86</td>
<td>74</td>
<td>64</td>
</tr>
<tr>
<td>14-25</td>
<td>81</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>87</td>
<td>59</td>
<td>17</td>
</tr>
<tr>
<td>Overall</td>
<td>88</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: The ‘Markets 2009’ column shows the total number of cities in which the retailer sells within size bins. The entry and exit columns display the share of average quarterly revenue represented by products that enter all of the retailer’s markets within a one-year period. The ‘share of value’ column displays the share of the overall value of entering or exiting products represented by retailers in each size bin.

2. In total over the two periods, gains from 2008-2010 range from 3.2 to 5 percentage points across cities, while they range from 4.3-6.7 percent from 2011-2014. Once again, differences in welfare gains across cities within a given year are weakly explained by city-level expenditure growth.

3.2 Retailers drive product entry

The weak relationship between the local business cycle and local product entry is surprising in light of the aggregate procyclicality of net product entry. This apparent contradiction is resolved if product entry decisions are driven by considerations at a more aggregate level. To understand what drives the entry of new products, I examine the entry pattern of products within a retailer. In principle, retailers may choose what products to offer at any level of disaggregation: from selecting an individual set of products for each physical store to choosing one set of products for every store across all markets. To explore this question, I study the behavior of products that enter or exit at least one market in a particular year. To fix ideas, I focus on 2009, the year with the most striking extensive margin movement.

In Table 3, I report how much of new product entry by value within each retailer consists of products that are introduced in all of that retailer’s markets within a one-year period. I divide retailers into size bins: while retailers that sell in just one city and national retailers each account for a significant fraction of new product entry, most new products are introduced in mid-sized retailers, often retailers with a regional presence. Because products may enter or exit in different quarters, shares of total entering or exiting value are calculated based on average quarterly revenue in the relevant time period. Across all retailer sizes, an average of 88 percent of new products are introduced simultaneously across all markets. While exiting products represent a smaller share of total value, I also look at product exit within retailers. Exit is less coordinated, but 70 percent of products that cease to be sold by multi-market retailers exit all cities within a one-year period.

10 Appendix Figures 5 and 6 plots the relationship between welfare gains and GDP growth and housing price growth respectively.

11 Results for all years 2008-2012 are similar. Entry/exit grids for the years 2009 and 2011 are displayed in Appendix Tables 20 and 21.
The high percentage of total entering or exiting value that enters or exits all markets simultaneously in Table 3 suggests that many retailers sell a similar set of products across all markets. This finding is particularly striking given the fact that the majority of retailers operate in a relatively small number of markets, suggesting that the cost of managing even a small number of markets individually is high. Another potential explanation might be that idiosyncratic regional business cycle shocks were simply insignificant in magnitude relative to the aggregate shock. However, local business cycles differed significantly over the period: the standard deviation of expenditure growth in the period 2008-2010 was 4.85 percentage points and 5.61 percentage points over the period 2011-2014. Later in the paper, I develop a model of retailer product selection that will help to distinguish these two cases.

It is possible that retailers introduce products simultaneously because the producer of the product itself has decided to sell its product in those markets. To address this possibility, I look at the fraction of retailers in each city in which new products are sold. I find that only about one third of retailers stock any given entering product, no matter how many markets the product is sold in. This remains true even among retailers that already stock another UPC from the same brand. While this is merely suggestive evidence, it indicates that retailers are able to select different product lines facing the same set of new products offered by producers.

Finally, to provide further support for the apparent finding that the retailer chooses its products globally rather than choosing a separate product line for each market, I decompose the growth in the entry of new products $\hat{n}_{ri,t}$ in a retailer-city at time t into common components coming from the retailer r in each year t, denoted $\hat{\alpha}_{rt}$, and from the city in each year, denoted $\hat{\beta}_{it}$ as follows

$$\hat{n}_{ri,t} = \hat{\alpha}_{rt} + \hat{\beta}_{it} + \epsilon_{rit}. \quad (2)$$

I report results year-by-year and pooled across all years 2008-2014 in Table 4, as well as the F-statistic for the joint significance of each set of fixed effects and the associated p-value. The partial R^2 compares the share of the variation in new product entry that is explained by the full model reported in equation (2) with a model containing only one set of fixed effects. If the share of the variation explained by the model falls significantly when one set of fixed effects is omitted, that means that the partial R^2 associated with that set of fixed effects is high. Because there may be some covariance between retailer- and city-time fixed effects, the partial R^2 associated with both sets of fixed effects can be greater than one. Note that the pooled regression also includes time invariant city-year fixed effects. Both sets of fixed effects are highly statistically significant. Retailer fixed effects explain 88 percent of the variation in the entry of new products, while city fixed effects explain 15 percent. This finding suggests that coordinated introduction of new products by retailers explains most of the growth in product variety across cities.
<table>
<thead>
<tr>
<th>Retailer</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial R^2</td>
<td>F-stat</td>
</tr>
<tr>
<td>2008</td>
<td>0.84</td>
</tr>
<tr>
<td>2009</td>
<td>0.88</td>
</tr>
<tr>
<td>2010</td>
<td>0.84</td>
</tr>
<tr>
<td>2011</td>
<td>0.89</td>
</tr>
<tr>
<td>2012</td>
<td>0.90</td>
</tr>
<tr>
<td>2013</td>
<td>0.90</td>
</tr>
<tr>
<td>2014</td>
<td>0.89</td>
</tr>
<tr>
<td>Mean</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Pooled 0.75 16.11 0.00 0.13 5.90 0.00

Notes: The table reports statistics associated with regression equation (2) for each year, the mean across years, and a pooled regression. The pooled regression also includes a time-invariant city-retailer fixed effect.

3.3 Net product entry co-moves with retailer revenue

The previous two findings suggest that gains from new products experienced in each city are better explained by retailer shocks than city-level shocks, but I have not yet explained what motivates a retailer to introduce new products. Now, I will show that retailers introduce new products in response to a positive shock to their total revenue. I begin by estimating a simple regression of new product entry at the retailer-city level on changes in the retailer’s lagged total revenue across all markets. However, it is possible that this regression is contaminated by endogeneity: a retailer’s revenue may increase because it has introduced new products. To address this concern, I construct a measure of plausibly exogenous demand growth at the retailer level by weighting city-level growth in total grocery expenditure, denoted \hat{X}_{it}, by the share of the retailer’s revenue coming from that city, denoted ω_{rit}. The retailer demand shock \hat{Z}_{rt} is given by

$$\hat{Z}_{rt} = \sum_i \omega_{rit} \hat{X}_{it}.$$ (3)

I estimate the relationship between net product entry at the city-retailer level and changes in retailer demand coming from shocks to total city-level demand via two-stage least squares as follows:

$$\hat{X}_{rt} = \alpha_0 + \alpha_1 \hat{Z}_{rt} + u_{rt}$$ (4)

$$\hat{\eta}_{rit} = \beta_0 + \beta_1 \hat{X}_{rt} + \epsilon_{rit}$$ (5)

where \hat{X}_{rt} denotes the growth of the retailer’s total revenue across all cities. Table 5 reports the results of the OLS regression of equation (5) and 2SLS regression of equations (4) and (5). The F-statistic of 183 suggests that the weighted city demand growth measure constructed in equation
Table 5: Net Product Entry and Retailer Revenue Growth

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Growth (r_{r,t-1})</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.03)</td>
</tr>
<tr>
<td>Retailers</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Observations</td>
<td>2,007</td>
<td>2,007</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>(F)-stat</td>
<td>183</td>
<td>(0.00)</td>
</tr>
</tbody>
</table>

Notes: The figure reports results of the regression equations (4) and (5) for each city-retailer-year. The IV estimate is highly statistically significant and suggests that a 10 percent increase in revenue growth due to a demand shock is associated with 2.2 percent net product entry. The average net product entry across retailer-city-years is 5.1 percent in the sample.

The finding that retailers drive differences in product entry across cities in response to changes in their demand motivates the model of retailer product choice that follows. Because net product entry in each retailer-city responds to total revenue, it suggests a mechanism through which demand shocks in one city can impact consumer welfare in another. Through the lens of the model I develop below, I am able to quantify the extent of inter-city demand shock transmission during the period covered by the data.

4 A Model of Retailer Product Choice

This section develops a model that can be used to demonstrate how retailer networks affect the propagation of local demand shocks across cities. The model environment consists of a set \(I\) of cities, indexed by \(i\), with units of labor \(L_i\) supplied inelastically and immobile across cities. There are \(R\) retailers in the economy, with a set \(R_i\) active in market \(i\), intended to capture the uneven distribution of retailers across cities in the data. The sets of active firms in each city are given, but the share of each retailer is determined by relative prices and city-specific retailer tastes.

Households choose consumption based on a three-tiered utility function. Grocery retailers sell a retailer-specific grocery bundle. They choose the length of their product lines subject to an increasing stocking cost and set a markup over the producer price of the grocery good. The model is static. Business cycle analysis compares steady states under different levels of city productivity \(a_i\).

4.1 Preferences

Consumers in each city \(i\) derive utility from a three-tier utility function. The top tier expresses how consumers aggregate grocery consumption \(C_i\) and non-grocery consumption \(Y_i\). The final consumption good is a Cobb-Douglas function of differentiated final grocery consumption and
homogeneous non-grocery consumption:

\[U_i = C_i^\beta Y_i^{1-\beta}. \]

(6)

Final grocery consumption \(C_i \) is a two-tier CES aggregate that allows the elasticity of substitution to differ across retailers and across goods. The second tier describes preferences over the grocery consumption bundles available at each retailer \(r \). The elasticity of substitution between retailers is given by \(\sigma_r \). A taste shifter \(\gamma_{ri} \) allows for the possibility that retailers have characteristics beyond their pricing that affect consumer demand:

\[C_i = \left(\sum_{r \in R_i} \gamma_{ri} \frac{1}{\sigma_{ri}^{\frac{1}{\sigma_r - 1}}} C_r^{\frac{1}{\sigma_r}} \right)^{\frac{\sigma_r}{\sigma_r - 1}}. \]

(7)

Because the set of retailers \(R_i \) remains constant across the sample, there are no direct gains from variety stemming from the entry of new retailers. However, if prices across retailers vary as the result of differences in goods prices or the number of products available, \(\sigma_r \) determines how much consumers substitute toward the lower-cost store bundle.

Finally, the consumption aggregate available at each retailer, \(C_{ri} \), is an aggregate over the set of varieties supplied by the retailer:

\[C_{ri} = \left(\int_{v \in \Omega_{ri}} C_{ri}(v)^{\frac{\sigma_g - 1}{\sigma_g}} dv \right)^{\frac{\sigma_g}{\sigma_g - 1}}. \]

(8)

Denote the measure of the set \(\Omega_{ri} \) as \(n_{ri} \). Because retailers choose how many products to offer, the within-retailer, across-good elasticity \(\sigma_g \) directly affects the number of varieties in a group. For the sake of tractability, I assume that the across-good elasticity is the same across all grocery goods.

4.2 Firms

4.2.1 Grocery Retailers

Grocery retailers \(r \) choose how many product varieties to sell and choose a markup \(\mu_{ri} \) to set on all products in order to maximize their total profits subject to a stocking cost \(F(n_r) \) with \(F'(n_r) > 0 \). For simplicity, I assume that the average marginal cost of goods sold at the retailer \(\bar{mc} \) is unaffected by the number of products chosen and is common to all retailers. Retailers face total grocery expenditures \(X_i \) and a price level \(P_i \) in each city. The retailer’s problem can be expressed as

\[\max_{\mu_{ri}, n_{ri}} \sum_{i=1}^{I/1} \gamma_{ri} \left(1 - \frac{1}{\mu_{ri}} \right) \left(\frac{n_{ri}^{\frac{1}{\sigma_r}} \mu_{ri} \bar{mc}}{P_i} \right)^{1-\sigma_r} X_i - F(n_r) \]

(9)
The retailer’s price level is given by

\[P_{ri} = n_{ri}^{-\sigma_g} \mu_{ri} m c \]

(10)

and \(P_i \) denotes the city grocery price level, defined as

\[P_i = \left(\sum_{r \in R_i} \gamma_{ri} P_{ri}^{1-\sigma_r} \right)^{1-\sigma_r}. \]

(11)

For all cities \(i \) such that \(r \notin R_i \), the taste parameter \(\gamma_{ri} \) is equal to zero. Fixed costs are paid nationally based on the total product line across all markets \(n_r = \max\{n_{ri}\}_{i \in I} \). Because the fixed cost is paid nationally, there is no motive for the retailer to choose an individual product line \(n_{ri} \) for each market. However, I do allow for a relationship of the form \(n_{ri} = \tau_i n_r \) between the global product line and the set of varieties ultimately available in city \(i \). The term \(\tau_i \) can be interpreted as an additional cost associated with providing varieties to city \(i \) if \(\tau_i < 1 \).

Practically, this term allows the model to rationalize the fact that New York and Los Angeles experience slightly higher gains from variety than other cities even within retailers, though this is unrelated to changes in demand in those two cities. Setting \(\tau_i = 1 \forall i \) will yield the same predictions quantitatively and qualitatively for every city but these two.

The first order condition with respect to the choice of \(\mu_{ri} \) is standard:

\[d \mu_{ri} : \gamma_{ri} \left(\frac{1}{\mu_{ri}} \right) \left(\frac{n_{ri}^{-\sigma_g} \mu_{ri} m c}{P_i} \right)^{1-\sigma_r} X_i + (1-\sigma_r) \left(1 - \frac{1}{\mu_{ri}} \right) s_{ri} (1 - s_{ri}) \frac{X_i}{\mu_{ri}} = 0 \]

(12)

where \(s_{ri} = \gamma_{ri} \left(\frac{n_{ri}^{-\sigma_g} \mu_{ri} m c}{P_i} \right)^{1-\sigma_r} \). The firm faces a trade-off between profit-per-unit and its share of the market: increasing the markup increases flow profits per unit, but tends to decrease the firm’s overall share. I assume that firms are small enough that \(s_{ri}^2 \approx 0 \), i.e. that firms set the monopolistically competitive markup rather than a variable markup based on retailer share.

The first order condition with respect to the choice of \(n_r \) is

\[d n_r : \sum_{i=1}^{L} \left[1 - \sigma_r \left(1 - \frac{1}{\mu_{ri}} \right) s_{ri} X_i \mu_{ri} + \frac{1 - \sigma_r}{1 - \sigma_g} \left(1 - \frac{1}{\mu_{ri}} \right) s_{ri}^2 X_i \mu_{ri} \right] - F'(n_r) = 0. \]

(13)

As noted, increasing the length of the product line increases the retailer’s share of demand because the consumer has love for variety: the same utility of consumption is less expensive at a retailer whose grocery bundle includes more varieties. I assume that \(F'(0) = 0 \) so that all retailers sell products.
Solving these two first order conditions yields the standard optimal gross markup

\[\mu_{ri} = \frac{1}{\sigma_r - 1} + 1 \]

(14)

The optimal product line is given by

\[n_r = \frac{1}{(\sigma_g - 1)\mu_{ri}} \sum_i s_iX_i \left(F'(n_r) \right). \]

(15)

Higher marginal stocking costs and greater substitutability between goods both lead to shorter product lines. All else equal, a retailer with larger global sales will have a longer product line. However, if the degree of substitutability across retailers is low, \(\mu_{ri} \) will be high and the product line will be shorter.

4.2.2 Goods Producers

Both grocery goods \(C \) and non-grocery goods \(Y \) are produced by perfectly competitive firms with technology \(a_iL_i \). The price of the non-grocery consumption good is the numeraire, and the good is freely traded. Grocery goods are also freely traded and produced with a common productivity \(a_i \) in each market, giving a marginal cost \(\bar{m}c_i = \frac{w_i}{a_i} \).

4.2.3 Retailer Profits

There are aggregate profits in the economy because free entry does not hold in the retail sector. They depend on the size of the retailer and on the stocking cost \(F(n_r) \). Given equations (14) and (15), the general expression for the retailer’s profits \(\pi_r \) is

\[\pi_r = \frac{X_r}{\sigma_r} - F(n_r) \]

(16)

Let the stocking cost be given by

\[F(n_r) = \left(\frac{n_r}{n_c} \right)^a. \]

(17)

The term in the denominator \(n_c \) will allow for trend growth in the number of varieties and accommodate differences in trend growth across the four categories to which food retailers in the data belong: convenience stores, drug stores, grocery stores and mass retailers. The length of the product line under this stocking cost parametrization is given by

\[n_r = \left(\frac{\sum_i s_iX_i}{\alpha(\sigma_g - 1)\mu_{ri}} \right)^{\frac{1}{2}} n_c \]

(18)
If $\alpha > 1$, the stocking cost is strictly convex in the length of the product line n_r.

Profits can be expressed as a function of the firm’s sales, its markup, and parameters:

$$\pi_r = \left[\frac{1}{\sigma_r} \left(1 - \frac{\sigma_r - 1}{\alpha(\sigma_g - 1)}\right)\right] \sum_{i=1}^I s_{ri} X_i$$

(19)

Note that weakly positive profits for all firms requires that $\alpha > \frac{\sigma_g - 1}{\sigma_g - 1}$. Since $\sigma_r \leq \sigma_g$, this condition only requires that the stocking cost not exhibit large increasing returns to scale in the size of the product line. It is always satisfied if the marginal cost of adding a product is constant or increasing.

4.3 Market Clearing

Goods and labor markets clear. Household expenditure X_i is divided across grocery and non-grocery goods according to their Cobb-Douglas utility shares β and $1 - \beta$. Goods market clearing in each city implies that

$$Y_i = (1 - \beta)X_i$$

(20)

and

$$P_i C_i = \mu X_i$$

(21)

Households supply labor inelastically. Labor demand associated with the production of non-grocery and grocery goods (the price of non-grocery goods is the numeraire) is given by

$$L^Y_i = \frac{Y_i}{a_i}$$

(22)

and

$$L^G_i = \frac{C_i}{a_i}$$

(23)

Finally, there is labor demand associated with the stocking costs paid by retailers (not associated with one particular market):

$$L^F = \sum_r F(n_r) \frac{a_i}{a_i}$$

(24)

Goods are freely tradable, so labor market clearing requires only that all labor be employed at a local wage $w_i = a_i$. Because the marginal value product of labor is equalized across cities, the
location of production for each good type is indeterminate. Total labor market demand across all cities must equal total labor supply:

\[
\sum_i \left(L^Y_i + L^G_i \right) + L^F = \sum_i L_i. \tag{25}
\]

I assume that the share of total profits rebated to consumers in city \(i \) are both given by \(s^\pi_i \). For simplicity, I assume that \(s^\pi_i \) is proportional to the city’s share of labor income:

\[
s^\pi_i = \frac{w_i L_i}{\sum_j w_j L_j}. \tag{26}
\]

As a result of this assumption, total expenditure in city \(i \) is a constant multiple of labor income across cities

\[
X_i = \left(1 + \frac{\sum_r \pi_r}{\sum_j w_j L_j} \right) w_i L_i. \tag{27}
\]

4.4 Equilibrium

An equilibrium in this economy is a set of retailer product lines and bundle prices \(\{n_{ri}, P_{ri}\}_{i \in I, r \in R} \), city-level grocery and factor prices \(\{P_i, w_i\}_{i \in I} \), local labor allocations \(\{L^Y_i, L^G_i, L^F_i\}_{i \in I} \), local goods production \(\{C_i, Y_i\}_{i \in I} \), and total profits per retailer \(\{\pi_r\}_{r \in R} \). Consumers maximize utility over consumption of grocery and non-grocery goods and allocate grocery consumption across retailers as specified in equations (6) and (7). Retailers maximize profits choosing product lines and a markup according to equations (12) and (13).

The retailer-city price level and the overall grocery price for each city are defined in equations (10) and (11). Local output and labor markets satisfy equations (20), (23) and (25).

4.5 Business Cycle Interpretation

In order to understand how the decisions of retailers can transmit productivity shocks across cities, I compare equilibria under a set of city-level productivities \(a_{i,t-1} \) and \(a_{i,t} \). It is convenient to compare steady states in terms of log changes, where \(\dot{x} = d\log x \). In this analysis, I assume that tastes are constant over time: \(\dot{\gamma}_{ri} = 0 \).

I focus on the impact of city-level shocks \(\{\dot{a}_i\}_{i \in I} \) on the length of an arbitrary retailer’s product line and markup and therefore on consumer welfare. First, log-linearizing equation (18) gives an expression for the change in product line length:

\[
\dot{n}_r = \frac{1}{\alpha} \dot{X}_r + \dot{n}_c, \tag{28}
\]

where the second term \(\dot{n}_c \) accommodates trend growth in the number of products for each retailer.
Transforming equation (10), the change in the retailer’s global price is given by

\[\hat{P}_r = \frac{1}{1 - \sigma_g} \hat{n}_r + m\hat{c}. \]

(29)

The growth in the price set by each retailer in each city incorporates the cost term \(\tau_i \), which enters through \(\hat{n}_{ri} \):

\[\hat{P}_r = \frac{1}{1 - \sigma_g} \hat{n}_{ri} + m\hat{c}. \]

(30)

Note that because \(w_i = a_i \) in every city, \(m\hat{c} = 0 \) in general. Combining these expressions, the change in the retailer’s price can be expressed as a function of parameters and its own demand:

\[\hat{P}_{ri} = \frac{1}{1 - \sigma_g} \hat{X}_r + \frac{1}{1 - \sigma_g} (\hat{n}_c + \hat{\tau}_i) \]

(31)

Log-linearizing the city grocery price level \(P_i \) in equation (11) gives

\[\hat{P}_i = \sum_r s_{ri} \hat{P}_{ri}. \]

(32)

4.6 City-Level Contributions to Retailer Variety

In order to understand how shocks to \(a_i \) may be transmitted to other cities through changes in the set of available products, I decompose the change in the retailer price \(\hat{P}_r \) into contributions coming from each city in which the retailer operates. I denote the impact of demand in city \(j \) on retailer \(r \)’s price level by \(\hat{T}_{rj} \). The full impact of demand in city \(j \) on city \(i \)’s price level is a weighted sum of each contribution \(\hat{T}_{rj} \), where the weights are the share of retailer \(r \) in city \(i \’)s expenditure. I describe the derivation of the expression for the impact of city \(j \) on city \(i \)’s demand, denoted \(\hat{T}_{ijr} \), in what follows.

Equations (28) and (29) describes the relationship between changes in total retailer revenue \(\hat{X}_r \), changes in the length of the product line \(\hat{n}_r \) and changes in the global price of the retailer \(\hat{P}_r \). I begin by decomposing this relationship into a contribution coming from each city in which the retailer operates. The share \(\omega_{ri} \) of retailer \(r \)’s revenue derived from each city \(i \) is

\[\omega_{ri} = \frac{s_{ri} X_i}{\sum_i s_{ri} X_i}. \]

(33)

Retailer revenue growth can be expressed as the inner product of retailer-city revenue shares and city expenditure growth:
\[\dot{X}_r = \sum_i \omega_{ri} \dot{X}_i. \] (34)

Combining equations (28) and (29), the retailer price level is:12

\[\dot{P}_r = \frac{1}{1 - \sigma_g} \frac{1}{\alpha} \dot{X}_r + \frac{1}{1 - \sigma_g} \dot{n}_c. \] (35)

I use equation (34) to decompose equation (35) into the contribution of each city \(j \) to the change in retailer \(r \)'s price, denoting this contribution by \(\dot{T}_{rj} \):

\[\dot{P}_r = \sum_j \omega_{ri} \dot{T}_{rj} \] (36)

where the contribution of city \(j \) to the change in the price level of retailer \(r \) is given by

\[\dot{T}_{rj} = \frac{1}{1 - \sigma_g} \frac{1}{\alpha} \dot{X}_j + \frac{1}{1 - \sigma_g} \dot{n}_c. \] (37)

The contribution of demand growth in city \(j \) to the price level in city \(i \) can be expressed as the sum of city \(j \)'s contributions \(\dot{T}_{rj} \) to retailers in set \(R_{ij} \), weighted by the share \(s_{ri} \) of each retailer in city \(i \)'s demand. I denote the total contribution of city \(j \) to city \(i \)'s price level by \(\dot{T}_{ij} \). Combining equation (32) with equations (36) and (37), the change in the price level in city \(i \) due to contributions to each retailer’s price from city \(j \) is given by

\[\dot{T}_{ij} = \sum_{r \in R_{ij}} s_{ri} \omega_{rj} \dot{T}_{rj}. \] (38)

Finally, combining equation (37) with equation (38), the connection between demand in city \(j \) and city \(i \)'s price level is given by:13

\[\dot{T}_{ij} = \frac{1}{1 - \sigma_g} \sum_{r \in R_{ij}} s_{ri} \omega_{rj} \left(\frac{1}{\alpha} \dot{X}_j + \dot{n}_c \right) \] (39)

Equation (39) expresses an intuitive relationship between demand in city pairs. City \(j \) has a larger impact on price level changes in city \(i \) whenever common retailers \(R_{ij} \) represent a large fraction of consumption in city \(i \) (\(s_{ri} \) is large), these retailers derive a significant fraction of their revenue from city \(j \) (\(\omega_{rj} \) is large), or demand shocks in city \(j \) are particularly significant (\(\dot{X}_j \) is large).

12Note that this is almost equivalent to equation (31), omitting city-level differences in the retailer’s price due to the term \(\tau_r \), which is unrelated to the retailer’s choice of product line.

13Because \(\sum_i \omega_{ri} = 1 \), the contribution of each city to trend growth \(\dot{n}_c \) can be divided proportionally across cities.
Table 6: Common Retailer Shares: City Pairs and Total

<table>
<thead>
<tr>
<th>City Pairs</th>
<th>All Other Cities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Share</td>
<td>Maximum Share</td>
</tr>
<tr>
<td>San Diego-LA</td>
<td>63</td>
<td>Columbus</td>
</tr>
<tr>
<td>Pittsburgh-Cleveland</td>
<td>37</td>
<td>Baltimore</td>
</tr>
<tr>
<td></td>
<td>Minimum Share</td>
<td>Minimum</td>
</tr>
<tr>
<td>Boston-Louisville</td>
<td><0.1</td>
<td>Chicago</td>
</tr>
<tr>
<td>Seattle-Louisville</td>
<td><0.1</td>
<td>Boston</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>63</td>
</tr>
</tbody>
</table>

Notes: The table reports extremes of the distribution of city-level common retailer shares S_{ij} in the first column and the sum over all other cities j in the second. Note that $S_{ij} \neq S_{ji}$.

5 Calibrated Model

The model links demand shocks in each city to consumer welfare gains from new products through the shares $\{s_{ri}, \omega_{ri}\}$, two key parameters α and σ_g, the cost parameter τ_i and the trend growth in varieties \hat{n}_c specific to each category of food retailer. In this section, I describe how I choose each parameter.

5.1 Retailer-city shares

The shares of each city-retailer in city-level expenditure, s_{ri}, and retailer revenue shares, ω_{ri}, are taken from data. I begin by characterising the relationship between cities implied by these shares. As equation (39) suggests, city j has a larger impact on city i’s price level when retailers in the set R_{ij} make up a large share of city i’s expenditure and when city j is a significant source of revenue for those retailers. The ‘common retailer share’ of city j in city i can be expressed as the sum of these shares, denoted $S_{ij} = \sum_{r \in R_{ij}} s_{rj} \omega_{rj}$, reflecting the share of common retailers in city i’s demand. Denote $S_i = \sum_{j \neq i} S_{ij}$, the common share between city i and all other cities.

Table 6 characterises both the bilateral common retailer shares S_{ij} as well as the overall common retailer share between each city and all others, S_i. The first column characterises common retailer shares across city pairs. Not surprisingly, small cities tend to have large common retailer shares with large neighbors: L.A.’s share of revenue in retailers available to consumers in San Diego is 63 percent. Bilateral ties between small cities in distant regions are virtually non-existent. While the fact that the bilateral share between San Diego and Boston is small is intuitive, it is somewhat surprising that this bilateral connection is so close to zero given the presence of several national retailers in the data. It appears that expenditures at national retailers are not large enough to create strong bilateral connections: the average bilateral connection is 2 percent.

The second column characterizes the common retailer share between city i and all other cities.
Table 7: Common Retailer Shares by Region

<table>
<thead>
<tr>
<th>Region</th>
<th>(s_{i,D_j})</th>
<th>Region</th>
<th>(s_{i,D_j})</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Coast</td>
<td>80</td>
<td>Mountain</td>
<td>7</td>
</tr>
<tr>
<td>Northeast</td>
<td>73</td>
<td>Midwest</td>
<td>14</td>
</tr>
<tr>
<td>Mountain</td>
<td>71</td>
<td>West Coast</td>
<td>18</td>
</tr>
<tr>
<td>Florida</td>
<td>64</td>
<td>Northeast</td>
<td>13</td>
</tr>
<tr>
<td>South</td>
<td>62</td>
<td>Northeast</td>
<td>9</td>
</tr>
<tr>
<td>Texas</td>
<td>54</td>
<td>Midwest</td>
<td>22</td>
</tr>
<tr>
<td>Midwest</td>
<td>47</td>
<td>Texas</td>
<td>25</td>
</tr>
</tbody>
</table>

Notes: The table reports the share of all common retailer links accounted for by other cities in the region (first two columns) and by cities in the outside region with the largest common retailer share (last two columns).

Consumers in small cities, particularly those geographically close to major metros, conduct most grocery purchases at retailers they share with other cities. At the highest extreme, the total common retailer share between Columbus and all other cities is 91 percent. Similarly large linkages can be seen in Baltimore. Chicago and Boston have strikingly low common retailer shares: these markets are large enough and isolated enough that outside cities contribute little to the revenue of retailers operating in these two cities. Boston is the most extreme, with a total common retailer share of just 18 percent.

Looking only at the extremes of the bilateral share distribution may give the impression that geography explains the degree to which two cities are connected. However, while some logical geographic patterns exist, strong common retailer shares are not restricted to cities in the same geographic region. I define regions based on Census divisions. Table 7 describes the share of all linkages accounted for by cities within and outside city \(i \)'s region according the expression

\[
s_{i,D_x} = \sum_{j \in D_x} \sum_r s_{ij} \omega_{rf}.
\]

The common share of each city with other cities in the same region is generally high. However, the table also reports the region other than city \(i \)'s own that accounts for the largest share of shock transmission. For example, cities in the West Coast region have their highest common share with other cities in the region, at 80 percent. Their highest outside common retailer share with another region is 7 percent with the Mountain region. Similarly, the Northeast has a high within-region common retailer share at 73 percent. Its largest common retailer share with another region is 14 percent with the Midwest. Other regions feature stronger links with cities in other regions. Texas accounts for just 54 percent of its own retailers’ revenue with strong connections to the Midwest, and the common retailer share of Texas cities in the Midwest is similarly large.

\footnote{I combine the New England and Mid Atlantic divisions and separate Tampa, Miami and Orlando from the rest of the South Atlantic division. For clarity, I refer to the South Central division as Texas because the cities representent in the data are Dallas and Houston.}
5.2 Parameters

Next, I describe how the values of the fixed cost parameter α from equation (17), elasticity of substitution across goods σ_g, cost parameter τ_i and trend growth rate of product variety \hat{n}_c are chosen.

Equation (28) demonstrates that the shape parameter of the cost function, α, also governs the elasticity of growth in the product line to growth in the retailer’s demand. In practice, changes in the value of new products offered by each retailer are better predicted by one year lagged than contemporaneous expenditure growth. As in section 3.3, I use the weighted average growth in a retailer’s markets as an instrument for exogenous growth in the retailer’s revenue:

$$\hat{Z}_{rt} = \sum_i \omega_{rit} \hat{X}_{it}$$ (40)

$$\hat{X}_{r,t-1} = \gamma_0 + \gamma_1 \hat{Z}_{r,t-1} + u_{ri,t}$$ (41)

$$\hat{n}_{ri,t} = \beta_1 \hat{X}_{r,t-1} + \beta_2 (1 - \text{LANYC}_i) + \Gamma_c + \epsilon_{ri,t}$$ (42)

The coefficients β_1 can be interpreted as $\beta_1 = \frac{1}{\alpha}$. Note that I allow for a set of category-specific trend growth rates of product variety Γ_c corresponding to the parameter \hat{n}_c. I estimate an elasticity of new products to retailer revenue of 0.16, implying a stocking cost shape parameter $\alpha = 6.46$. Because this elasticity is less than one, the retailer’s marginal cost of supplying additional products $F(n_r)$ increases with the number of products offered.

I allow for a difference in the trend growth of new products between the two largest cities in the sample, New York and Los Angeles, and all other cities, given by the indicator variable LANYC_i. This trend difference $\hat{\tau}$ implies that all other cities experience new product entry that is 0.7 percentage points lower. Importantly, this is not driven by particularly high demand in New York and Los Angeles, but rather by the fact that some retailers appear to offer a slightly longer product line in large cities. Note that this is one parameter, not a trend adjustment specific to each city.

To avoid the bias associated with macroelasticities highlighted by Imbs and Mejean (2015), I choose an elasticity to match the average welfare gains calculated using the microelasticities in Appendix Table 14 rather than calculating a macro elasticity pooling all goods. To do so, I regress the model-predicted change in product variety in each city, $\hat{n}_{i,t}$, on the microestimates reported in Section 3.1. I estimate a value of σ_g of 4.09. The elasticity of substitution σ_g governs the welfare impact of new products. Parameter values are summarized in Table 9.

To evaluate the model’s predictions, I use the calibration of the parameters in equations (31)
Table 8: Parameter Calibration Regression

<table>
<thead>
<tr>
<th>$\hat{n}_{ri,t}$</th>
<th>Associated Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>α</td>
<td>6.46</td>
</tr>
<tr>
<td>(.011)</td>
<td>(.45)</td>
<td></td>
</tr>
<tr>
<td>β_2</td>
<td>$\hat{\tau}$</td>
<td>-.007</td>
</tr>
<tr>
<td>(.001)</td>
<td>(.001)</td>
<td></td>
</tr>
</tbody>
</table>

Number of Obs 2,007
Retailers 70
R^2 0.39

Note: The table reports the results of regression equation (42), which is used to calibrate parameters α and $\hat{\tau}$.

Table 9: Parameter Values in Baseline Calibration

<table>
<thead>
<tr>
<th>Value</th>
<th>Expenditure and Revenue Shares ${s_{ri}, \omega_{ri}}$</th>
<th>Table 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Trend Growth Adjustment $\hat{\tau}$</td>
<td>-.007 (.001)</td>
<td></td>
</tr>
<tr>
<td>Goods Elasticity of Substitution σ_g</td>
<td>4.09 (.03)</td>
<td></td>
</tr>
<tr>
<td>Stocking Cost Shape Parameter α</td>
<td>6.46 (.45)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table summarizes the parameter values used in the calibration. The distribution of shares, which implicitly defines γ_{ri}, was discussed previously.

and (32) to predict city-level welfare gains based on demand growth in each city. I compare the model’s predictions to the welfare gains calculated in section 3.1 using microdata at the UPC level. The predictions of the model are plotted against the gains based on micro data in Figure 3. Within the period 2008-2010, the correlation between the baseline model and the microdata estimate is 0.75, while within the period 2011-2014 it is 0.85. Overall, the correlation between the baseline model and the microdata estimates is 0.92.

6 Decomposing welfare gains into city-level contributions

6.1 City-level shocks in the baseline model

The model implies that demand shocks in other cities impact consumer welfare through the product selection decisions of common retailers. I return to the decomposition in equations (34) and (37) and calculate the implied contribution of each city to consumer welfare in other cities in the baseline model. The contribution of demand shocks in city j to city i’s price level can be expressed as

$$T_{ij} = \frac{1}{1 - \sigma_g} \frac{1}{\alpha} \sum_{R_{ij}} s_{r_i} \omega_{r_j} \hat{X}_j. \quad (43)$$

Table 10 reports the results for the average city as well as two particular examples: other cities account for 63 percent of welfare gains in the average city (this share exceeds 50 percent in part
Notes: The figure compares the prediction of the calibrated model to the welfare gains estimated using UPC-level microdata for each retailer.

Table 10: Contribution of Own and Outside Shocks to Welfare Gains

<table>
<thead>
<tr>
<th></th>
<th>2008-2010</th>
<th>2011-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Share</td>
<td>0.63</td>
<td>1.8</td>
</tr>
<tr>
<td>Own Shocks</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Outside Shocks</td>
<td>2.8</td>
<td>3.6</td>
</tr>
</tbody>
</table>

because the largest cities in the sample are much larger than the average). The average city receives welfare gains of 1.5 percentage points from its own demand shocks between 2008-2010 and 1.8 percentage points from 2011-2014. Welfare gains derived from outside shocks are larger at 2.8 and 3.6 percentage points respectively. The table also reports the contribution of own and outside demand shocks for two cities on opposite extremes: Boston and Columbus. Not surprisingly, Boston, which has very low connections to other cities through retailers, inherits little of its welfare gains from other cities. Columbus, which is highly integrated with other Midwestern cities, derives almost all its welfare gains from other cities.

Next, I ask whether welfare shock transmission results from intra-regional shocks: in other words, whether understanding regional outcomes is sufficient to predict city-level welfare. Table 11 reports the share of welfare gains coming from cities in the same region and the outside region that
Table 11: Contribution of Intra- and Cross-Regional Shocks to Welfare Gains

<table>
<thead>
<tr>
<th>Region</th>
<th>Gains</th>
<th>Largest Outside Region</th>
<th>Gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Coast</td>
<td>75</td>
<td>Mountain</td>
<td>7</td>
</tr>
<tr>
<td>Northeast</td>
<td>70</td>
<td>Midwest</td>
<td>14</td>
</tr>
<tr>
<td>Mountain</td>
<td>66</td>
<td>West Coast</td>
<td>18</td>
</tr>
<tr>
<td>South</td>
<td>58</td>
<td>Northeast</td>
<td>10</td>
</tr>
<tr>
<td>Florida</td>
<td>54</td>
<td>Northeast</td>
<td>15</td>
</tr>
<tr>
<td>Texas</td>
<td>49</td>
<td>Midwest</td>
<td>22</td>
</tr>
<tr>
<td>Midwest</td>
<td>44</td>
<td>Texas</td>
<td>24</td>
</tr>
</tbody>
</table>

Notes: The table records the average across cities in each region of the share of welfare gains attributable to cities within and outside its own region.

makes the largest contribution. While regional shocks account for a substantial share of welfare gains, consumers in Florida, the South, Texas and the Midwest derive a substantial fraction of their gains from new products from demand shocks in other regions.

Large welfare gains from outside shocks can be generated two ways: if one city has an unusually large shock, it transmits some welfare gains (or losses) even to cities with which it has few common retailers. On the other hand, shock transmission may be the result not of a significantly large shock in some locations, but of large connections between cities through common retailers that account for a significant share of demand. I decompose the relationship further to explore whether the large contribution of outside cities is attributable to large shocks or to large retailer connections.

Define the total common retailer share between city i and city j as $S_{ij} = \sum_{R_{ij}} s_{rij} \omega_{ri}$. The contribution of city j to city i’s price level can be expressed as the impact of variation in demand shocks X_j across locations, the impact of variation in shares S_{ij}, and an expression closely related to the covariance between these two:

$$T_{ij} = \frac{1}{1 - \sigma_g} \frac{1}{\alpha} \left(S_{ij} X_j + \frac{S_{ij} \bar{X} - S_{ij} \bar{X}}{\text{Avg}} + (S_{ij} - \bar{S}_i)(X_j - \bar{X}) \right) \text{ Covariance}. \tag{44}$$

The average \bar{S}_i is defined at the city level to accommodate the fact that cities vary significantly in their degree of integration:

$$\bar{S}_i = \frac{1}{J} \sum_{j \neq i} S_{ij}. \tag{45}$$

The average \bar{X} is the average demand shock across cities

$$\bar{X} = \frac{1}{J} \sum X_j \tag{46}.$$
Table 12: Contribution of Shocks and Shares to Demand Shock Transmission

<table>
<thead>
<tr>
<th></th>
<th>T_{ij}</th>
<th>Shocks</th>
<th>Shares</th>
<th>Covariance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial R^2</td>
<td>0.04</td>
<td>0.86</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation (pp)</td>
<td>0.67</td>
<td>0.17</td>
<td>0.64</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Notes: The table records the share of variation orthogonal to other variables that can be explained by each component of equation (12).

The results of the decomposition are reported in Table 12. Differences in shares orthogonal to other factors account for 86 percent of the variation in total welfare gains from outside cities, while the covariance term accounts for 11 percent of the variation. Variation in shocks accounts for just 3 percent of the variation. The intuition is clear after looking at the amount of variation in the three terms: the standard deviations of the share and covariance terms are significantly greater than the standard deviation of the shock term.

The results indicate the importance of inter-city common retailer shares in explaining transmission of shocks. Though demand shocks range from -2.4 to 27 percent, the average inter-city share is just 2 percent. With such a low common retailer share between i and j, there will be relatively low transmission even of a large demand shock. Shock transmission occurs primarily between the city pairs that have larger common retailer shares.

6.2 Counterfactuals

For a given business cycle, a city may benefit or suffer from its connection with other cities. If a city receives a better shock than its neighbor, their common retailers offer fewer products than had both cities experienced the better shock. The converse is also true. However, the transmission of shocks across cities unambiguously decreases the variation in welfare gains if idiosyncratic business cycle shocks are random across cities.

To understand how much smoothing of welfare gains from new variety is generated by existing multi-city retailers, I compare the predictions of the baseline model to two polar counterfactuals. First, I conduct a ‘local’ counterfactual in which all retailers are local: i.e., setting $\omega_{ri} = 1$. In this counterfactual, new product entry will only respond to local demand shocks. At the other extreme, I consider a counterfactual in which retailers are all national, i.e., $\omega_{ri} = \frac{X_i}{\sum_{i \in I} X_i}$, $\forall r$. In this case, even though local shocks vary, this city-level variation will be smoothed out within each retailer, and new product entry will respond only to aggregate demand.

Table 13 reports the standard deviation of demand growth and welfare gains across cities in the periods 2008-2010 and 2011-2014. Demand growth was more variable in the recovery period, so the standard deviation of welfare is higher in this period. Because retailers in all cities are exposed to the same demand shock under the national counterfactual, the standard deviation of business cycle welfare gains is zero in this scenario. In both periods, the standard deviation of welfare gains from demand shocks across cities under the baseline distribution of retailers is about 68 percent of the standard deviations when retailers are local. While the existence of multi-city retailers appears to
Table 13: Baseline and Counterfactual Models: Standard Deviation of Welfare Gains

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\hat{X}_{i})</td>
<td>Baseline</td>
<td>Local Variety</td>
<td>National Variety</td>
</tr>
<tr>
<td>2008-2010</td>
<td>4.85</td>
<td>0.17</td>
<td>0.24</td>
<td>0.00</td>
</tr>
<tr>
<td>2011-2014</td>
<td>5.61</td>
<td>0.19</td>
<td>0.28</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes: The table reports the standard deviation of demand shocks and the standard deviation of business cycle product entry in the baseline model, local and national counterfactuals.

result in smoother welfare gains across cities, the baseline model suggests that the fact that most retailers are regional rather than national results in much more variable welfare gains from product variety than would result from national retailers.

7 Conclusion

This paper documents a novel channel through which business cycle shocks are transferred across locations. While previous work has shown that booms are associated with entry of new products at the national level, entry of new products across cities is not well-explained by local business cycles. If consumers value variety, entry of new products effectively lowers the consumer price level, raising the real wage.

The welfare implications of local changes in product variety are relatively large: from 2008-2010, the average city experienced welfare gains ranging from 3.9 to 5.7 percentage points, and they experienced gains of 4.7 to 6.7 percentage points in 2011-2014. I present evidence that the welfare gains associate with net product entry are driven by retailers who operate in multiple markets and coordinate product entry across markets. The role of retailers in explaining product entry motivates a model in which multi-city retailers choose how many products to sell to maximize their profits subject to an increasing cost of extending the product line.

I use the model to decompose the welfare gains in each city into a contribution coming from each other city in the data. The model implies that consumers in the average city derive 63 percent of welfare gains from demand in other cities. The transmission of shocks acts as a mechanism through which the idiosyncratic component of business cycle shocks may be ‘smoothed’ across cities. However, comparison of the level of inter-city variation in welfare gains under the baseline and counterfactuals in which variety is determined purely locally or at the aggregate level suggest that the predominance of regional rather than national retailers results in substantially higher variation in consumer welfare than under full product market integration.
References

A Variety-Adjusted Price Index

In this section, I use shares and prices of grocery goods for the 26 cities in the data to calculate an adjusted price index consistent with the CES utility structure in section 4.1. The measured CPI relies upon a constant basket of goods, but under CES preferences, the price level decreases in the number of varieties. I follow Broda and Weinstein (2010) in defining a variety-adjusted price index consistent with a three-tier CES preference structure within each retailer, but add an additional, uppermost tier describing consumer’s substitution across retailers. I discuss this modeling decision and evidence from previous studies that retailers are imperfect substitutes in section 3.1. Here, I begin by outlining the structure of the price index and the assumptions needed to estimate elasticities of substitution. In sections A.1 and A.3, I will consider two well-known approaches to estimating elasticities of substitution, one based on Feenstra (1994) and one on Hausman (1996).

In order to identify elasticities of substitution for each tier of the price level, I assume that each coarse product group has a constant elasticity of substitution within each tier. For brand-modules in the same group (e.g. Dole Canned Peaches in the Canned Fruit group), the elasticity of substitution between UPCs in the brand-module will be the same. Similarly, the elasticity of substitution across brand-modules in the group is constant. For brevity, I list only the expression for the most disaggregated tier: the growth in the price level for brand-module b in group g:

$$\frac{P_{b,rt}}{P_{b,rt-2}} = \prod_{x \in \Omega_{b,t}^*} \left(\frac{p_{xb,rt}}{p_{xb,rt-2}} \right)^{w_{xb,rt}} \left(\frac{\lambda_{g,b,rt}}{\lambda_{g,b,rt-2}} \right)^{\frac{1}{\sigma_{bg}} - 1}$$

(47)

where $\Omega_{b,t}^*$ denotes the set of UPCs common to periods t and $t-2$ in group g and $w_{bt}^g = \{w_{xb,rt}\}_{\Omega_{b,t}^*}$ are consumption weights to be specified below. The set of common UPCs $\Omega_{b,t}^*$ is a subset of all UPCs sold in a given time period, denoted $\Omega_{b,t}$. $\lambda_{g,b,rt}^S$ is defined as

$$\lambda_{g,b,rt}^S = \frac{\sum_{\Omega_{b,t}} p_{xb,rt}q_{xb,rt}}{\sum_{\Omega_{b,t}} p_{xb,rt}q_{xb,rt}}$$

(48)

In words, $\lambda_{g,b,rt}^S$ represents the share of all revenue in the brand-module attributable to products sold in both $t-2$ and t. Notice that, all else equal, if the brand-module experiences sales of new varieties in year t that exceed those in year $t-2$, $\lambda_{g,b,rt}^S$ falls relative to $\lambda_{g,b,rt-2}^S$ and the relative price level in year t also falls. Conversely, if new products represent a smaller share of expenditures in the category in year t than in year $t-2$, the price level rises. The strength of the impact of the share ratio $\frac{\lambda_{g,b,rt}^S}{\lambda_{g,b,rt-2}^S}$ is governed by the elasticity of substitution σ_{bg}^S. Again following the literature, I define the weight on price inflation for common products as the Sato-Vartia (1976) weights based on the quality adjustment considerations discussed in Broda and Weinstein (2010). Differences in quality should be captured by products’ in-category market share.

\[15\]
share of variety x in total expenditures on common products, $s_{xt} = \frac{p_{xb,rt}q_{xb,rt}}{\sum_{tb} p_{tb,rt}q_{tb,rt}}$.

$$\omega_{xb,rt}^s = \frac{s_{xb,rt}^s - s_{xb,rt-2}^s}{\ln s_{xb,rt}^s - \ln s_{xb,rt-2}^s}.$$ \hspace{1cm} (49)

Sato-Vartia weights represent a method of chain-weighting. While it is possible to compute an adjusted price index using either Laspeyres or Paasche weights, thereby imitating the conventional measured CPI, each of these expenditure weight schemes introduces a set of mismeasurement concerns due to substitution, precisely the issue this adjusted price index is attempting to resolve. The Sato-Vartia is an ideal weight in the sense that $c(p_t, \Omega b_t) / c(p_{t-1}, \Omega b_{t-2}) = P_t / P_{t-2}$ in the absence of demand shocks to common goods. Redding and Weinstein (2016) note that these weights are different from those implied by an ideal CES price index with time-varying taste shocks and propose an alternative weighting scheme. However, the common goods price growth and the variety adjustment remain log-separable in their ideal CES price index. Because my primary interest is in producing a comparison between a typical measured price index (here, chain-weighted) and a variety-adjusted price level, I retain this weighting scheme.\footnote{A requirement of this or any other measure of the price level using data on prices and expenditures is that demand shocks ‘net out’ across the set of products common to the two periods. Otherwise, the consumer experiences a wholesale increase in utils per dollar which cannot be measured.}

If there are additional sources of mismeasurement in the conventional CPI, the price index defined in (47) is no longer exact, but as long as the sources of mismeasurement are multiplicatively separable, it remains an exact measure of the bias created by considering only a common basket of varieties.

The price indices for the middle and top tier are constructed similarly. The data includes a product group (coarse category), product module (fine product category) and brand for each UPC. In calculating the empirical price index, I allow for two different elasticities within each group: the elasticity of substitution across UPCs within a brand-module σ^g_b, and across brand-modules in the same group σ^g_a. There is one elasticity across product groups within each retailer, σ^g_r, and across retailers, σ_r. The four-tiered utility function allows for four different variety adjustment terms in principle. The addition of a new brand within a module or a new module within a group could imply greater welfare gains, since fewer close substitutes for the new variety may exist. In practice, I restrict the sample to a constant sample of product groups and consider a set of retailers that are common to both periods. There are only two relevant variety adjustment terms: the within brand-module adjustment defined in equation (48) and the across brand-module adjustment within each retailer that is calculated similarly.

The price index for final consumption is given by
\[
\frac{P_t}{P_{t-2}} = \prod_{r \in R} \left[\prod_{g \in \Omega^*} \left(\prod_{b \in \Omega^*_{gb}} \left(\prod_{x \in \Omega^*_{gb}} \left(\frac{p_{xb,rt}}{p_{xb,rt-2}} \right) \right) \right) \right]^{w_{gb,rt}} \left(\lambda^g_{rt} \right)^{\frac{1}{\sigma^g_{gb} - 1}} \left(\frac{\lambda^g_{rt}}{\lambda^g_{rt-2}} \right)^{\frac{1}{\sigma^g_{gb} - 1}} \left(\frac{w_{rt}}{w_{rt}} \right) \tag{50}
\]

where \(\Omega^*_{gb} \) represents the set of common brand-modules within the group and the shares of common brand-modules within the group, \(\omega^g_{gb,rt} \), shares of each group within the retailer \(\omega^g_{rt} \), and shares of each retailer \(\omega_{rt} \) in total consumption are defined analogously to \(\omega^g_{xb,rt} \) in equation (49).

The variety-adjusted price index in equation (50) allows for a flexible estimate of gains from the entry of new product varieties. The contribution to gains from variety in each product category is affected by three elements of the price level: the relative share of new products, the elasticity of substitution, and the category consumption weight.

First, the value of new products to consumers is measured as their share of total revenue. Varieties within a product category that are most valued by consumers are likely to have a high revenue share, either because they are purchased in large quantities or because they are expensive as a result of high demand. Therefore, the share of common products \(\lambda \) is likely to fall significantly between \(t - 2 \) and \(t \) when a new variety that is highly valued by consumers enters the market in period \(t \), while it will rise when a product with a high revenue share leaves the market between \(t - 2 \) and \(t \).

Second, the welfare implications of the growth or fall in the share of common products are adjusted by the elasticity of substitution in each category. Because the substitutability of products may vary widely across categories, it is essential to adjust the contribution of the extensive margin accordingly. Suppose that products in a brand-module are near-perfect substitutes, implying that if a new and relatively inexpensive product enters the market, it will represent a very large share of revenues in the brand-module. This will occur even if the difference in prices between the two goods is small, resulting in a very large \(\lambda \) ratio. Clearly, the welfare implications of a slight decrease in the price should also be small. Raising the expression to the power \(\frac{1}{\sigma^g_{gb} - 1} \), the same expression found in the CES price index, adjusts the price level by scaling down the contribution of the extensive margin in highly substitutable product categories relative to less elastic categories. I restrict \(\sigma > 1 \) for the elasticity of substitution within brand-modules and across brand-modules within the same product group.\(^{17}\) Because the extensive margin at the group level is inactive, the upper tier elasticities do not need to be estimated: their values are implicit in the relative group weights \(\omega^g_{rt} \) and \(\omega_{rt} \). The elasticities of substitution \(\sigma^g_{gb} \) and \(\sigma^g_{ga} \) play a large role in capturing the welfare implications of the extensive margin. The procedure for estimating them is addressed in detail in the next section.

The third and final aspect of the price level that affects the variety-adjustment to the price level is the set of weights \(\omega_{rt} \). The level of activity on the extensive margin may vary widely across

\(^{17}\)With inelastic demand for varieties, the price level is infinite whenever one variety is unavailable. This is true, for example, in Cobb-Douglas or Leontief preference structures.
product types, which could be driven by demand- or supply-side differences between types of producers. The relative weights between categories, which are applied to the common goods price index and the variety adjustment, re-weight the contribution of each category’s extensive margin by its share in consumption. This again captures the intuition that the consumer does not value variety *per se*, but rather a larger consumption set in important expenditure categories.

The data contain prices and expenditures for each product, which provides all the information necessary to calculate an adjusted price index except the within and across elasticities σ^g_b and σ^g_a. I now describe how I estimate these elasticities following approaches based on Feenstra (1994) and Hausman (1996).

A.1 Feenstra (1994) Elasticities

The difficulty of estimating the elasticity of demand based on price and quantity data is well-known. Without more information or assumptions, it is impossible to disentangle demand and supply shocks. Here, the large number of observations for a panel of many related products offers the opportunity to make some reasonable and relatively non-restrictive assumptions. Before writing down the estimation structure formally, I will sketch out the approach.

Following Feenstra (1994) and Broda and Weinstein (2010), I assume that the elasticities of demand and supply are constant within the product group tier. For example, take the canned fruit product group, containing the canned peach and canned pineapple product modules. This structure allows the within brand-module (different types of canned peaches sold by the same brand) and across brand-module (different types of canned fruit sold by any brand) elasticities to differ, but their values are the same for all brand-modules in the group. Without this type of assumption, each product pair could presumably have a different elasticity of substitution. Holding the elasticities constant within the product group allows for differences in substitutability in clearly distinct groups (e.g. Canned Fruit vs. Tea) while ensuring that there are enough observations per elasticity to make estimation possible.

One challenge to identification concerns the presence of common shocks to all products in a category. Seasonality, changes in taste, changes in cost from common suppliers, or changes in the competitiveness of the industry could all contribute to shocks that change not only the prices of individual products, but also the price level of goods in the category, potentially biasing elasticity estimates. I identify a benchmark product and calculate a log difference-in-difference of all other products’ sales shares and prices versus the change in these variables for the benchmark product in order to net out common time trends. Finally, I assume that idiosyncratic demand and supply shocks are uncorrelated.

I now will describe the procedure for estimating the brand-module elasticities, which I will call the ‘within’ elasticities, more concretely. Allowing s^b_{vt} to denote the share of variety v within
brand-module b in group g, I note that

$$s_{vt}^b = \epsilon_{vt}^b \left(\frac{p_{vt}}{P_t^b} \right)^{1-\sigma_g^b} \tag{51}$$

where ϵ_{vt}^b is an idiosyncratic demand shifter for variety v at time t. Taking logs and first-differencing,

$$\Delta \ln s_{vt}^b = \xi_t^b + (1 - \sigma_g^b) \Delta \ln p_{vt} + \Delta \ln \epsilon_{vt}^b \tag{52}$$

where $\xi_t^b = (1 - \sigma_g^b) \Delta \ln P_t^b$ and $E[\ln \epsilon_{vt}^b] = 0$.

The problem of the firm will be developed further below. For the purpose of estimation, I assume that the inverse elasticity of supply in each product group is given by $\omega_{g}^b \geq 0$, allowing for the possibility that marginal costs are increasing in production. In logged first-differences,

$$\Delta \ln p_{vt} = \zeta_t^b + \omega_{g}^b \Delta \ln s_{vt}^b + \Delta \ln \delta_{vt}^b \tag{53}$$

where $\zeta_t^b = \frac{\omega_{g}^b}{1+\omega_{g}^b} \Delta \ln \exp_t^b$, δ_{vt}^b represents an idiosyncratic shock to marginal cost of variety v at time t, and $E[\ln \delta_{vt}^b] = 0$. I restrict $E[\epsilon_{vt}^b \delta_{vt}^b] = 0$: demand and supply shocks are assumed to be uncorrelated. Last, to remove the brand-time fixed effects, I take the first difference of the share and price data of each variety v versus a reference variety v' in the same brand-module. Define $\Delta' \ln x_v = \Delta \ln x_v - \Delta \ln x_{v'}$. Equation (52) becomes:

$$\Delta' \ln s_{vt}^b = (1 - \sigma_g^b) \Delta' \ln p_{vt} + \Delta' \ln \epsilon_{vt}^b, \tag{54}$$

while Equation (53) becomes

$$\Delta' \ln p_{vt} = \omega_{g}^b \Delta' \ln s_{vt}^b + \Delta' \ln \delta_{vt}^b. \tag{55}$$

The intuition of the procedure to follow, as set out in Leamer (1981), is that given a pair of price and quantity observations for one variety, the combinations of demand and supply elasticities that could possibly give rise to these observations are described by a hyperbola. The assumption that these elasticities are constant within the product group allows us to choose the (σ, ω) point where the hyperbolas for each variety intersect. However, equations (52) and (53) suffer from bias due to the fact that the errors ϵ_{vt}^b and δ_{vt}^b are correlated with p_{vt}^b and s_{vt}^b. The assumption that the parameters to be estimated are constant across varieties in the same brand-module allows for consistent parameter estimates following the approach in Leamer (1981). Exploiting the uncorrelated errors, I take the product of equations (54) and (55):

$$(\Delta' \ln p_{vt})^2 = \theta_1 (\Delta' \ln s_{vt})^2 + \theta_2 (\Delta' \ln p_{vt}) (\Delta' \ln s_{vt}) + u_{vt}$$

This approach was developed in Feenstra (1994).
Table 14: Demand and Supply Elasticity Estimates

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_b</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>ω_b</td>
<td>60</td>
<td>59</td>
<td>59</td>
<td>56</td>
</tr>
</tbody>
</table>

Percentiles of Elasticity Dist.

<table>
<thead>
<tr>
<th></th>
<th>10th</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>90th</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_a</td>
<td>3.94</td>
<td>4.79</td>
<td>6.08</td>
<td>8.13</td>
<td>17.14</td>
</tr>
<tr>
<td>ω_a</td>
<td>0.14</td>
<td>0.28</td>
<td>0.49</td>
<td>0.70</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Note: The table describes the within and across elasticity estimates for the categories in which they could be estimated.

\[
\theta_1 = \frac{\omega_g}{(1+\omega_g)(\sigma_a - 1)} \quad \text{and} \quad \theta_2 = \frac{1-\omega_g(\sigma_a^2 - 2)}{(1+\omega_g)(\sigma_a - 1)}, \quad u_{vt} = \Delta' \ln e_{vt}^b \Delta' \ln \delta_{vt}^b, \]

Note that the error \(u_{vt}\) is still correlated with the transformed price and share variables. Following Feenstra (1994) by averaging across \(t\) within a variety \(v\), I obtain the following equation, the bar denoting the average:

\[
\bar{(\Delta' \ln p_v)}^2 = \theta_1 (\Delta' \ln s_v)^2 + \theta_2 (\Delta' \ln p_v) (\Delta' \ln s_v) + \bar{u}_v \quad (56)
\]

and estimate by GMM with Hansen (1982) weights, with the number of moment conditions equal to the number of varieties in set \(\Omega_{vb}\). A weak condition must hold for any pair of varieties \(v\) and \(v'\), namely

\[
\frac{\text{var}(\Delta' \ln e_{vt}^b)}{\text{var}(\Delta' \ln e_{vt}^{b'}_t)} \neq \frac{\text{var}(\Delta' \ln \delta_{vt}^b)}{\text{var}(\Delta' \ln \delta_{vt}^{b'}_t)}.
\]

This restriction rules out the case in which products in the same category have exactly proportional demand and supply shock distributions, which would imply that their \(\sigma\) and \(\omega\) estimates were co-linear.

Broda and Weinstein (2006) suggest a modification of Feenstra’s procedure in the case where the estimates \(\theta_1\) and \(\theta_2\) from equation (56) yield imaginary or non-feasible estimates of the elasticities (i.e. \(\sigma < 1, \omega < 0\)). In these cases, I conduct a grid search in the interval \(\sigma^g \in [1.05, 131.5]\) at intervals of 0.05 to identify the value that minimizes the GMM objective. In cases in which I am unable to calculate an elasticity that is statistically different from zero, I impute the median elasticity estimate from the rest of the sample. There are 61 product groups; I calculate 60 significant ‘within’ elasticities and 59 significant ‘across’ elasticities.\(^{19}\) The process to estimate the ‘across’ elasticities is similar, using the weighted average price for items in each brand within the module and the share of each brand instead of individual goods’ prices and shares.

Table 14 reports descriptive statistics on these estimates in columns (1) to (4), as well as the distribution of (5) within brand-module common expenditure ratios \(\frac{\lambda_i}{\lambda_{i-2}}\) and (6) across brand-

\(^{19}\)One of the ‘within’ elasticities and three of the ‘across’ are generated using grid search.
Table 15: CPI Bias Estimates

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Annual Bias</th>
<th>Cumul. Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th</td>
<td>0.92</td>
<td>8.13</td>
</tr>
<tr>
<td>10th</td>
<td>0.96</td>
<td>8.22</td>
</tr>
<tr>
<td>25th</td>
<td>1.16</td>
<td>8.77</td>
</tr>
<tr>
<td>50th</td>
<td>1.37</td>
<td>9.77</td>
</tr>
<tr>
<td>75th</td>
<td>1.60</td>
<td>10.27</td>
</tr>
<tr>
<td>90th</td>
<td>1.77</td>
<td>11.27</td>
</tr>
<tr>
<td>95th</td>
<td>1.85</td>
<td>11.56</td>
</tr>
</tbody>
</table>

Note: The table reports annualized and cumulative percentage estimates of the bias of the CPI due to changes in product variety.

module common expenditure ratios $\frac{\lambda_t}{\lambda_{t-2}}$ for each group. My elasticity estimates are a little smaller than those in Broda and Weinstein (2010), who use a different set of product groups and report median within and across elasticities of 11.5 and 7.5. In the adjusted price index calculations that follow, I use the baseline estimates in (1) and (3), but also compare them with median elasticity estimates from Broda and Weinstein (2010). Perhaps surprisingly, the ‘across’ elasticities are slightly larger than the ‘within’ elasticities. Large elasticities push the gains from variety toward zero.

However, as columns (5) and (6) demonstrate, most of the gains from variety occur within brand-module, making the ‘across’ elasticities relatively less important. The median ‘within’ common expenditure ratio is 0.93, indicating that the share of products that existed in both t and $t-2$ in total annual sales fell by 7 percent in t relative to $t-2$. The median ‘across’ expenditure ratio is 0.99, indicating that the share of existing brands within the group fell by 1 percent in the two year period. Not surprisingly, new brands arrive less frequently than new products within an existing brand. 90 percent of groups experience increases in variety within brand-modules over a two year period, suggesting that gains will not be driven by one particular type of product.

A.2 Calculating the CPI Bias

Next, I apply these estimates to the calculation of city-level price indices according to Equation (50). Table 15 reports the distribution of the average annual CPI bias across the 26 cities in the sample. Each city experiences an average annual welfare gain of at least 1.5 percent. The distribution of city-year annual bias estimates is reported in column (1). The variability reflected in the average annual bias is amplified in the cumulative gains for the period 2008-2014 reported in column (2). The median city experiences welfare gains equivalent to a 9.77 percent drop in the price level over the period. The city with the highest welfare gains experiences a cumulative variety adjustment that is 3.9 percentage points larger than the adjustment in the city with the lowest welfare gains.
A.3 Hausman (1996) Elasticities

While the Feenstra (1994) technique is frequently used in settings that require the estimation of a large number of elasticities, there are also alternative methods commonly used to estimate elasticities. In this section, I describe a technique based on Hausman (1996). The identifying assumption in this approach is that the price of a UPC does not vary based on city-specific cost as well as that there are no national UPC-level demand shocks. As a result, changes in price in other cities can be used as an instrument for shifts in the supply curve. Specifically, the inverse supply function for UPC v belonging to brand b sold in city i at time t is given by

$$\ln p_{b,v,it} = \delta_b \ln c_{b,v,t}^b + \alpha_{b,v,t}^b + \beta_{b,v,t}^b + w_{b,v,t}^b$$

Notice that cost $c_{vb,t}$ does not vary at the city level. The estimation allows for city-specific, time-invariant differences in cost across cities for the UPC and for city-specific cost shocks at the brand level. The error $w_{b,v,t}^b$ reflects mean-zero idiosyncratic variation in the price of the variety stemming from local disturbances such as variation in the timing of sales by store managers across cities. The fixed cost structure invites the same double-differencing approach taken above. The change in the price of UPC v in city i is given by

$$\Delta \ln p_{b,v,it} = \delta_b \Delta \ln c_{b,v,t}^b + \Delta \beta_{b,v,t}^b + \Delta w_{b,v,t}^b$$

To remove the brand-time fixed effects, I take the first difference of the share and price data of each variety v versus a reference variety v' in the same brand-module. Define $\Delta' \ln x_{v} = \Delta \ln x_{v} - \Delta \ln x_{v'}$.

$$\Delta' \ln p_{b,v,it} = \delta_b \Delta' \ln c_{b,v,t} + \Delta' w_{b,v,t}$$ (57)

No new assumptions are required on consumer demand. As in the Feenstra technique, demand in logged first-differences is given by

$$\Delta' \ln s_{b,vit} = (1 - \sigma_g^b) \Delta' \ln p_{v,it} + \Delta' \ln e_{v,it}$$ (58)

The structure of the inverse supply equation (57) suggests that supply-side changes in the differenced price $\Delta' \ln p_{vb,it}$ can be identified using the price in other markets as an instrument. Any combination of the price in other markets could be a valid vector of instruments, but the computational burden associated with using the price in individual cities as an instrument is large in this setting. I adopt the commonly used strategy of computing, for each market, the average price in all other markets. The first stage is given as follows:

$$\Delta' \ln p_{v,it}^b = \gamma_t + \gamma_{t1} \sum_{j \neq i} \frac{\Delta' \ln p_{v,jr}^b}{I - 1} + u_{v,it}^b$$
Equation (58) is the second stage.

The process to estimate the ‘across’ elasticities is similar, using the weighted average price for items in each brand within the module and the share of each brand instead of individual goods’ prices and shares. I report the elasticities calculated using this approach in the table below. In cases in which I am unable to calculate an elasticity that is statistically different from zero, I impute the median elasticity estimate from the rest of the sample. There are 61 product groups; I calculate 53 significant ‘within’ elasticities and 33 significant ‘across’ elasticities.

Table 16 reports descriptive statistics on these estimates in columns (1) to (4). The median ‘within’ elasticity is 1.99, significantly smaller than the median elasticity calculated using the Feenstra technique. The median ‘across’ elasticity is 1.35. Because an elasticity closer to one will yield a larger implied welfare gain given the same ratio $\frac{\lambda}{\lambda-1}$, the set of elasticities estimated using the Hausman approach will yield larger estimates for each city.

A.4 Calculating the CPI Bias

Next, I apply these estimates to the calculation of city-level price indices according to Equation (50). Table 17 reports the distribution of the average annual CPI bias across the 26 cities in the sample. Each city experiences an average annual welfare gain of at least 6.6 percent. The distribution of city-year annual bias estimates is reported in column (1). The variability reflected in the average annual bias is amplified in the cumulative gains for the period 2008-2014 reported in column (2). The median city experiences welfare gains equivalent to an 86 percent drop in the price level over the full sample period.

The welfare gains calculated using Hausman elasticities are almost ten times as large as those calculated using the Feenstra method. I choose to use the Feenstra elasticities in the main text because it leads to more conservative estimates of the welfare impact of new varieties and the magnitude of demand shock transmission across cities. Results using the Hausman elasticities
Table 17: CPI Bias Estimates

Baseline Elasticity Measures

<table>
<thead>
<tr>
<th>Percentile</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th</td>
<td>6.6</td>
<td>73.8</td>
</tr>
<tr>
<td>10th</td>
<td>7.5</td>
<td>73.9</td>
</tr>
<tr>
<td>25th</td>
<td>9.7</td>
<td>78.5</td>
</tr>
<tr>
<td>50th</td>
<td>12.1</td>
<td>86.0</td>
</tr>
<tr>
<td>75th</td>
<td>15.2</td>
<td>92.0</td>
</tr>
<tr>
<td>90th</td>
<td>18.0</td>
<td>106.7</td>
</tr>
<tr>
<td>95th</td>
<td>19.4</td>
<td>109.0</td>
</tr>
</tbody>
</table>

Note: The table reports annualized and cumulative percentage estimates of the bias of the CPI due to changes in product variety.

would be qualitatively similar though the magnitude of welfare gains transmitted across cities and their business cycle variation would be larger.
B Model Extension: Variable Markups

The model of product choice with multi-city retailers developed in section 4 made the simplifying assumption that firms are small enough that they do not internalize their effect on the price level in making product decisions. However, with a finite number of retailers in each market, it is possible that retailers could be large enough to have significant market power. This section develops a variant of the model that allows for changes in market share to affect the product entry decision made by each retailer. Household preferences remain as described in section 4.1 and the production of grocery and non-grocery goods is as described in section 4.2.2.

The only change will be to the problem of the grocery retailer. I develop the retailer’s problem below, allowing the retailer to choose a city-specific markup. I make this choice based on evidence from the literature. Handbury and Weinstein (2015) find that there is relatively little within-retailer variation in the price of each product, despite the fact that costs are presumably higher in large cities, implying that the markup on goods is smaller in large cities. Hottman (2015) rationalizes the decline in markup with city size as the result of greater competition between retailers in larger locations. In my model, costs do not vary at the city level, so allowing the markup to depend on the price at the city level will result in different prices across locations.

B.1 Firms

B.1.1 Grocery Retailers

Grocery retailers \(r \) choose how many product varieties to sell and choose a markup \(\mu_{ri} \) to set on all products in each city \(i \) order to maximize their total profits subject to a stocking cost \(F(n_r) \) with \(F'(n_r) > 0 \) as in the baseline model. For simplicity, I again assume that the average marginal cost of goods sold at the retailer \(m \) is unaffected by the number of products chosen and is common to all retailers. Retailers face total grocery expenditures \(X_i \) and a price level \(P_i \) in each city. The retailer’s problem can be expressed as

\[
\max_{\mu_{ri}, n_r} \sum_{i=1}^{I} \gamma_{ri} \left(1 - \frac{1}{\mu_{ri}} \right) \left(\frac{n_{ri}^{1/\sigma_r} \mu_{ri} m c}{P_i} \right)^{1-\sigma_r} X_i - F(n_r)
\]

The retailer’s price level is given by

\[
P_{ri} = n_{ri}^{1/\sigma_r} \mu_{ri} m c
\]

and \(P_i \) denotes the city grocery price level, defined as

\[
P_i = \left(\sum_{r \in R_i} \gamma_{ri} P_{ri}^{1-\sigma_r} \right)^{1/(1-\sigma_r)}.
\]
For all cities i such that $r \notin R_i$, the taste parameter γ_{ri} is equal to zero. As before, fixed costs are paid nationally, so there is no motive for the retailer to choose an individual product line n_{ri} for each market. However, I allow for a relationship of the form $n_{ri} = \tau_i n_r$ between the global product line and the set of varieties ultimately available in city i. The term τ_i can be interpreted as an additional cost associated with providing varieties to city i if $\tau_i < 1$.

Practically, this term allows the model to rationalize the fact that New York and Los Angeles experience slightly higher gains from variety than other cities even within retailers, though this is unrelated to changes in demand in those two cities. Setting $\tau_i = 1$ for all i will yield the same predictions quantitatively and qualitatively for every city but these two.

The first order condition with respect to the choice of μ_{ri} is standard:

$$d\mu_{ri} : \left(\frac{1}{\mu_{ri}} \right) s_{ri} X_i + \left[\left(1 - \sigma_r \right) \left(1 - \frac{1}{\mu_{ri}} \right) s_{ri} (1 - s_{ri}) \frac{X_i}{\mu_{ri}} \right] = 0 \quad (62)$$

where $s_{ri} = \gamma_{ri} \left(\frac{n_{ri}}{n_{ri} - \sigma_g \mu_r \mu_i} \right)^{1 - \sigma_r}$. The firm faces a trade-off between profit-per-unit and its share of the market: increasing the markup increases flow profits per unit, but tends to decrease the firm’s overall share. I depart from the previous section in that I assume that firms are small enough that $s_{ri}^2 \approx 0$, i.e. that firms set the monopolistically competitive markup rather than a variable markup based on retailer share.

The first order condition with respect to the choice of n_r is

$$dn_r : \sum_{i=1}^{I} \left[\left(\frac{1 - \sigma_r}{1 - \sigma_g} \right) s_{ri} \frac{X_i}{n_r} - \frac{1 - \sigma_r}{1 - \sigma_g} \left(\frac{1 - 1/\mu_{ri}}{1 - \mu_{ri}} \right) s_{ri}^2 \frac{X_i}{n_r} \right] - F'(n_r) = 0. \quad (63)$$

As noted, increasing the length of the product line increases the retailer’s share of demand because the consumer has love for variety: the same utility of consumption is less expensive at a retailer whose grocery bundle includes more varieties. I assume that $F'(0) = 0$ so that all retailers sell products.

Solving these two first order conditions yields a gross markup that varies with the retailer’s share of market i

$$\mu_{ri} = \frac{1}{(\sigma_r - 1) (1 - s_{ri})} + 1 \quad \text{(64)}$$

The optimal product line is given by

$$n_r = \frac{1}{(\sigma_g - 1) F'(n_r)}. \quad \text{(65)}$$

Higher marginal stocking costs and greater substitutability between goods both lead to shorter
product lines. All else equal, a retailer with larger global sales will have a longer product line. However, if the gross markup in a particular city is high, the retailer will ‘discount’ the revenues that it receives from that city. From equation (64), the gross markup will be larger if retailer substitutability σ_r is low or the share of the retailer s_{ri} is high. There are two reasons why a retailer might have high sales in city i: it may be that total expenditure X_i is large, in which case the incentive to increase the product line to capture a larger share is high, or it may be that retailer r already has a high market share s_{ri} in that city, in which case it faces a reduced incentive to compete.

B.1.2 Retailer Profits

There are aggregate profits in the economy because free entry does not hold in the retail sector. They depend on the size of the retailer and on the stocking cost $F(n_r)$. Given equations (64) and (65), the general expression for the retailer’s profits π_r is

$$\pi_r = \sum_i s_{ri} X_i \sigma_r (1 - s_{ri}) + s_{ri} - F(n_r)$$

(66)

Let the stocking cost be given by

$$F(n_r) = \left(\frac{n_r}{n_c} \right)^\alpha.$$

(67)

The term in the denominator n_c will allow for trend growth in the number of varieties and accommodate differences in trend growth across the four categories to which food retailers in the data belong: convenience stores, drug stores, grocery stores and mass retailers. The length of the product line under this stocking cost parametrization is given by

$$n_r = \left[\frac{\sum_i s_{ri} X_i}{\alpha (\sigma_g - 1)} \right]^{\frac{1}{\alpha}} n_c$$

(68)

If $\alpha > 1$, the stocking cost is strictly convex in the length of the product line n_r.

Profits can be expressed as a function of the firm’s sales, its markup, and parameters. For convenience, define $\sigma_{ri} = \sigma_r (1 - s_{ri}) + s_{ri}$:

$$\pi_r = \sum_{i=1}^I \frac{1}{\sigma_{ri}} \left(1 - \frac{\sigma_{ri} - 1}{\alpha (\sigma_g - 1)} \right) s_{ri} X_i$$

(69)

Weakly positive profits for all firms requires that $\alpha > \frac{\sigma_g - 1}{\sigma_g - 1}$. Since $\sigma_{ri} \leq \sigma_r \leq \sigma_g$, this condition only requires that the stocking cost not exhibit large increasing returns to scale in the size of the product
line. It is always satisfied if the marginal cost of adding a product is constant or increasing.

B.2 Market Clearing and Equilibrium

Markets clear as described in section 4.3 and the equilibrium is as described in section 4.4.

B.3 Business Cycle Interpretation

In order to understand how the decisions of retailers can transmit productivity shocks across cities, I compare equilibria under a set of city-level productivities $a_{i,t-1}$ and $a_{i,t}$. It is convenient to compare steady states in terms of log changes, where $\hat{x} = d\log x$. In this analysis, I assume that tastes are constant over time: $\hat{\gamma}_{ri} = 0$.

I focus on the impact of city-level shocks $\{\hat{a}_i\}_{i \in I}$ on the length of an arbitrary retailer’s product line and markup and therefore on consumer welfare. First, log-linearizing equation (68) gives an expression for the change in product line length:

$$\hat{n}_r = \frac{1}{\alpha} \sum_i \omega_{ri} (\hat{s}_{ri} + \hat{X}_i - \hat{\mu}_{ri}) + \hat{n}_c. \quad (70)$$

The change in the length of the retailer’s product line not only depends on exogenous changes in demand, but also on the change in its share and therefore markup.

The growth rate of the markup of the retailer in city i is given by

$$\hat{\mu}_{ri} = \frac{s_{ri}}{1 - s_{ri}} \sigma_{ri}\hat{s}_{ri}. \quad (71)$$

The change in the share is given by

$$\hat{s}_{ri} = (1 - \sigma_r)(\hat{P}_{ri} - \sum_{r' \in R_i} s_{ri}\hat{P}_{r'i}) \quad (72)$$

Transforming equation (60), the change in the retailer’s global price is given by

$$\hat{P}_{ri} = \frac{1}{1 - \sigma_g} \hat{n}_{ri} + \hat{\mu}_{ri}. \quad (73)$$

The growth in the price set by each retailer in each city incorporates the cost term τ_i, which enters through \hat{n}_{ri}. Note that because $w_i = a_i$ in every city, $\hat{m}c = 0$ in general.

Combining these expressions, the change in the retailer’s price can be expressed as a function
of parameters and its own demand:

\[
\hat{P}_{ri} = \frac{1}{1 - \sigma_g \alpha} \sum_i \omega ri \left[\left(1 - \frac{s_{ri}}{(1 - s_{ri}) \sigma_{ri}} \right) \hat{s}_{ri} + \hat{X}_i \right] + \frac{1}{1 - \sigma_g} (\hat{n}_c + \hat{r}_i) \tag{74}
\]

Change in Product Variety

\[
+ \frac{s_{ri}}{(1 - s_{ri}) \sigma_{ri}} \hat{s}_{ri} \tag{75}
\]

Change in Markup

Log-linearizing the city grocery price level \(P_i \) in equation (61) gives

\[
\hat{P}_i = \sum_r s_{ri} \hat{P}_{ri}. \tag{75}
\]

Notice that in the model with variable markups, demand shocks may lead to changes on the intensive margin of the price level as the markup on all goods rises or falls, along with the impact on the price level coming from new products, a mechanism common to the baseline model.

B.4 City-Level Contributions to Retailer Variety

In order to understand how shocks to \(a_i \) may be transmitted to other cities through changes in the set of available products, I decompose the change in the retailer price \(\hat{P}_r \) into contributions coming from each city in which the retailer operates. I denote the impact of demand in city \(j \) on retailer \(r \)'s price level by \(\hat{T}_{rj} \). The full impact of demand in city \(j \) on city \(i \)'s price level is a weighted sum of each contribution \(\hat{T}_{rj} \), where the weights are the share of retailer \(r \) in city \(i \)'s expenditure. I describe the derivation of the expression for the impact of city \(j \) on city \(i \)'s demand, denoted \(\hat{T}_{ij} \), in what follows.

I use equation (34) to decompose equation (35) into the contribution of each city \(j \) to the change in retailer \(r \)'s price, denoting this contribution by \(\hat{T}_{rj} \):

\[
\hat{P}_{ri} = \sum_j \omega_{rj} \hat{T}_{rj} + \frac{s_{ri}}{(1 - s_{ri}) \sigma_{ri}} \hat{s}_{ri} \tag{76}
\]

where the contribution of city \(j \) to the change in the price level of retailer \(r \) is given by

\[
\hat{T}_{rj} = \frac{1}{1 - \sigma_g \alpha} \omega_{rj} \left[\left(1 - \frac{s_{rj}}{(1 - s_{rj}) \sigma_{rj}} \right) \hat{s}_{rj} + \hat{X}_j \right] + \frac{1}{1 - \sigma_g} \hat{n}_c \tag{77}
\]

The contribution of demand growth in city \(j \) to the price level in city \(i \) can be expressed as the sum of city \(j \)'s contributions \(\hat{T}_{rj} \) to retailers in set \(R_{ij} \), weighted by the share \(s_{ri} \) of each retailer in city \(i \)'s demand. I denote the total contribution of city \(j \) to city \(i \)'s price level by \(\hat{T}_{ij} \). Combining equation (75) with equations (76) and (77), the change in the price level in city \(i \) due to contributions
to each retailer’s price from city j is given by

$$\hat{T}_{ij} = \sum_{r \in R_{ij}} s_{ri} \omega_{rj} \hat{T}_{rj}. \quad (78)$$

Finally, combining equation (77) with equation (78) expresses the connection between demand in city j and city i’s price level:

$$\hat{T}_{ij} = \frac{1}{1 - \sigma_g} \sum_{r \in R_{ij}} s_{ri} \omega_{rj} \left(\frac{1}{\alpha} \left[1 - \frac{s_{rj}}{(1 - s_{rj}) \sigma_{rj}} \right] \hat{s}_{rj} + \hat{X}_j \right) + \hat{n}_c \quad (79)$$

Equation (79) expresses an intuitive relationship between demand in city pairs. City j has a larger impact on price level changes in city i whenever common retailers R_{ij} represent a large fraction of consumption in city i (s_{ri} is large), these retailers derive a significant fraction of their revenue from city j (ω_{rj} is large), or demand shocks in city j are particularly significant (\hat{X}_j is large).

B.5 Calibrated Model

In this section, I recalibrate the parameters $\sigma_g, \alpha, \tau_i, \text{and } \hat{n}_c$ as well as the elasticity of substitution σ_r between retailers that governs the relationship between changes in the retailer’s price and share as a result of demand shocks. Initial shares $\{s_{ri}, \omega_{ri}\}$ remain as characterized in section 5.1. I estimate an elasticity of substitution across retailers using the technique outlined in Appendix Section A.3. I find a value of $\sigma_r = 1.2 (0.04)$, implying relatively low substitutability across retailers.

Next, I describe how the values of the fixed cost parameter α from equation (67), elasticity of substitution across goods σ_g, cost parameter τ_i and trend growth rate of product variety \hat{n}_c are chosen. As in section 5.2, I measure the shock to city-level demand as total demand growth in each city-year. Because I relax the assumption that retailers are small and do not internalize their impact on the price level, the choice of variety is itself a function of the change in the retailer’s share. I use the weighted average growth in a retailer’s markets as an instrument for exogenous growth in the retailer’s revenue:

$$\hat{X}_{r,t-1} = \sum_i \omega_{rit} \hat{X}_{it-1} \quad (80)$$

$$\hat{n}_{ri,t} = \beta_1 \left(\hat{X}_{r,t-1} + \sum_i \omega_{ri,t} \left[1 - \frac{s_{ri,t}}{(1 - s_{ri,t}) \sigma_{ri,t}} \right] \hat{s}_{ri,t} \right) + \beta_2 (1 - \text{LANYC}_i) + \Gamma_c + \epsilon_{ri,t} \quad (81)$$

Because $\sum_i \omega_{ri} = 1$, the contribution of each city to trend growth \hat{n}_c can be divided proportionally across cities.
Table 18: Parameter Calibration Regression

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>6.51</td>
</tr>
<tr>
<td></td>
<td>(0.61)</td>
</tr>
<tr>
<td>$\hat{\tau}$</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
</tr>
</tbody>
</table>

Number of Obs 2,007
Retailers 70
R^2 0.39

Note: The table reports the results of regression equation (81), which is used to calibrate parameters α and $\hat{\tau}$.

\[
\hat{s}_{ri} = (1 - \sigma_r)(\hat{P}_{ri} - \sum_{r' \in R_i} s_{ri} \hat{P}_{r'i}) \tag{82}
\]

\[
\hat{P}_{ri} = \frac{1}{1 - \sigma_g} \hat{n}_{ri} + \frac{s_{ri}}{(1 - s_{ri}) \sigma_{ri}} \hat{s}_{ri} \tag{83}
\]

Because $\hat{n}_{ri,t}$ depends on $\hat{s}_{ri,t}$, which in turn depends on the shocks faced by retailer r relative to other retailers in the set R_i, I estimate the parameters in this system of equations using a two-step numerical procedure. In an inner loop, I solve the system of equations for a given vector of parameters, while the outer loop minimizes mean squared error over the parameter space. Table 18 reports the parameters τ_i and α calculated using this method. The values are almost identical to those found in Table 18.

Next, I characterize the contribution of changes in market share to changes in product variety. The growth in product variety at the retailer level depends on a function, denoted $\hat{\gamma}_{r,t}$, of the change in the retailer’s share $s_{ri,t}$ in each market:

\[
\hat{\gamma}_{r,t} = \sum \omega_{ri,t} \left[1 - \frac{s_{ri,t}}{(1 - s_{ri,t}) \sigma_{ri}} \right] \hat{s}_{ri,t} \tag{84}
\]

The changes in share $\hat{s}_{ri,t}$ predicted by the model are small: the minimum change in retailer-city share is -0.11 percent and the maximum is 0.23 percent. For most retailers, equation (84) suggests that the weighted net effect of changes in shares $\hat{\gamma}_{r,t}$ will be smaller because the coefficient on $\hat{s}_{ri,t}$ will be between zero and one. For retailers with large shares $s_{ri,t}$ such that $s_{ri,t} > 2(1 - s_{ri}) \sigma_{ri}$, the net effect of a change in share may not only be negative but have an elasticity greater than one with respect to the change in share. For this subset of firms, the negative effect on variety generated by an increase in market share outweighs the positive effect of an increase in revenue. In practice, the potential for amplification of changes in share is relatively unimportant: $\hat{\gamma}_{r,t}$ is smaller than the
Table 19: Parameter Values in Baseline Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenditure and Revenue Shares</td>
<td>(s_{r_t}, \omega_{r_t})</td>
<td>Table 6</td>
</tr>
<tr>
<td>City Trend Growth Adjustment (\hat{\tau})</td>
<td>-0.007</td>
<td></td>
</tr>
<tr>
<td>Retailer Elasticity of Substitution (\sigma_r)</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>Goods Elasticity of Substitution (\sigma_g)</td>
<td>4.09</td>
<td></td>
</tr>
<tr>
<td>Stocking Cost Shape Parameter (\alpha)</td>
<td>6.51</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table summarizes the parameter values used in the calibration. The distribution of shares, which implicitly defines \(\gamma_{r_t}\), was discussed previously.

I also consider the implication of equation (73) for changes in the price on the intensive margin. The correlation between the model-implied change in the markup and measured changes in city-retailer price is -0.026, suggesting that the small changes in inflation suggested by the model are not important in explaining changes in price on the intensive margin.

The value of all parameters in the model with variable markups are summarized in Table 19. To evaluate the model’s predictions, I use the calibration of the parameters in equations (74) and (75) to predict city-level welfare gains based on demand growth in each city. I compare the model’s predictions to the welfare gains calculated in section 3.1 using microdata at the UPC level. The predictions of the model are plotted against the gains based on micro data in Figure 4. Within the period 2008-2010, the correlation between the baseline model and the microdata estimate is 0.75, while within the period 2011-2014 it is 0.86. Overall, the correlation between the baseline model and the microdata estimates is 0.92.

Notice that the fit between the model with variable markups and the gains calculated from microdata is almost exactly the same as the fit between the baseline model and the microdata-based welfare gains. In fact, the correlation between the two models is close to one, suggesting there are essentially no improvements in the prediction generated by allowing for variation in the amount of product entry generated by changes in market power.

The irrelevance of market power in explaining net product entry is not surprising. Within the subset of cities in the sample, retailers rarely have significant market power, especially considering that the shares as measured in the Nielsen data represent an upper bound on the true market share including non-participating retailers. Furthermore, the model only allows for changes in market share generated by demand shocks. In the data, there may be retailer or retailer-city specific shocks affecting consumer taste. Modeling these shocks could result in a somewhat larger role for changes in market share and markups in explaining changes in product variety, but the finding above that \(\gamma_{r,t} = \sum_i \omega_{r_i} \delta_{r_{i,t}}\) for at least 97 percent of retailers in the data suggests that no change in market share is likely to result in large differences in the predicted growth of variety in this model.
Figure 4: Baseline Model Predicted Welfare Gains vs. Microdata-Based Welfare Gains

Notes: The figure compares the prediction of the calibrated model to the welfare gains estimated using UPC-level microdata for each retailer.

C Appendix: Supplementary Figures and Tables

Figure 5: Welfare Gains from New Products and City-Level GDP Growth

Notes: The figure plots welfare gains derived from a four-tier CES price index for the periods 2008-2010 and 2011-2014 against average annual lagged GDP growth from the Bureau of Economic Analysis.
Figure 6: Welfare Gains from New Products and House Price Growth

Notes: The figure plots welfare gains derived from a four-tier CES price index for the periods 2008-2010 and 2011-2014 against average annual lagged house price growth from the Federal Housing Finance Agency.

Table 20: Extensive Margin Entry and Exit Patterns by Number of Initial Markets

<table>
<thead>
<tr>
<th>Markets 2008</th>
<th>Product Enters All Retailer’s Markets (%)</th>
<th>Product Exits All Retailer’s Markets (%)</th>
<th>Share of Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>16</td>
</tr>
<tr>
<td>2-13</td>
<td>86</td>
<td>72</td>
<td>63</td>
</tr>
<tr>
<td>14-25</td>
<td>80</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>86</td>
<td>64</td>
<td>17</td>
</tr>
</tbody>
</table>

Notes: In the entry (exit) grid, the ‘Markets’ column is the total number of markets into (out of) which the retailer has introduced (discontinued) the product relative to 2008. The horizontal bins reflect the number of markets into which the product enters within one year (four quarters) of entering its first market. Percentages represent the share of average quarterly revenue of all exiting products over the time period that falls into each bin.

Table 21: Extensive Margin Entry and Exit Patterns by Number of Initial Markets

<table>
<thead>
<tr>
<th>Markets 2010</th>
<th>Product Enters All Retailer’s Markets (%)</th>
<th>Product Exits All Retailer’s Markets (%)</th>
<th>Share of Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>2-13</td>
<td>90</td>
<td>74</td>
<td>62</td>
</tr>
<tr>
<td>14-25</td>
<td>81</td>
<td>52</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>87</td>
<td>59</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes: In the entry (exit) grid, the ‘Markets’ column is the total number of markets into (out of) which the retailer has introduced (discontinued) the product relative to 2010. The horizontal bins reflect the number of markets into which the product enters within one year (four quarters) of entering its first market. Percentages represent the share of average quarterly revenue of all exiting products over the time period that falls into each bin.