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Abstract

We study a dynamic agency model in which firms have access to private evidence

that predicts their short-term cash flows. Evidence is stochastic and cannot be

fabricated, but it can be shrouded by the managers. When bad news are disclosed,

the firm’s investors find it optimal to remit current interest payments, which helps

them insuring against bad luck. However, both when bad news are not preemptively

disclosed and upon good news, the firm faces higher interest rates relative to the

no-evidence case. On path, the value of firms that disclose more frequently is less

sensitive to their performance. Their long-run leverage and default risk are lower,

while their dividend-payout rates are higher. However, at the initial stage – where

capital and information structures are jointly designed – default risk may increase

with the availability of evidence, especially at low profitability firms. The benefit for

firms from having evidence to disclose peaks at intermediate performance histories.
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1 Introduction

Over the last two decades, technological progress drastically reduced the costs of gen-

erating, storing and analyzing information. Adoption of the latest generation of such

technologies, Big Data analytics, reached 59% of the firms surveyed by Dresner Advi-

sory Services (2018) in 2018.1 Firms have increased their access to evidence that leads

performance, and are expected to disclose information to their investors more frequently.

This paper studies the real effects of such enhanced disclosure opportunities in a dynamic

agency setting, as well as the optimal patterns of technological adoption across firms.

A famous early adopter was the Germany national soccer team in 2014, during the

World Cup that it eventually won. As Darcy Norman – who worked with that team –

explains: “One of the key metrics we track is [...] how much power a player produces

relative to their physiologic response to power. The more power a player generates during

an exercise without burning too much energy, the more efficient and fit they are”.2

Evidently, coaches can use the data to adjust drills and training goals, and to guide

the choice of players for the next game. But the technology also allows them to better

justify their choices with their principals. For example, a coach who faces a likely defeat

may point to a quantitative metrics that helps to predict it, front-running the usual

criticism of the choices of players and module that comes with a defeat. If there was

always evidence to justify all choices, there would be unraveling à la Grossman (1981)

and Milgrom (1981). Otherwise, in the more realistic case where evidence is stochastic,

informed coaches have an incentive to be strategic in their disclosures, only revealing

what favors them (Dye (1985), Shin (2003)). Thus, evidence brings about its own layer

of conflict, which interacts with other agency problems. In a dynamic model, we study

how this interaction changes the optimal contract and the allocation it implements.

As typical in the dynamic agency literature, we present our results in the context of

a corporate finance problem. A principal, who collectively represents a group of outside

investors, contracts with an agent who runs a firm. We refer to the agent as the firm’s

manager and to the principal as the firm’s investors. The firm generates risky i.i.d. cash

flows over time, that are non-verifiable and can be diverted by its management. Our key

innovation is that we introduce the possibility for the firm to adopt an information tech-

nology.3 Upon adoption, the technology produces stochastic evidence that predicts the

1The survey covers more than 5,000 firms globally. An additional 30% of the respondents signaled
interest in adopting these technologies in the near future.

2As quoted in: How the Adidas miCoach System Has Helped Germany in the World Cup (2014).
3Similar dynamic agency models (without disclosure opportunities) have been studied by Bolton and

Scharfstein (1990), Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007), Biais et al. (2007).
In the example of the coach of a sport team, it is perhaps more natural to think of the agency conflict as
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one-period-ahead cash flows from then onwards.4 While adoption is common knowledge,

the realized evidence each period is privately observed by the manager, as in Dye (1985)

or Shin (2003). The investors only observe evidence upon its voluntary disclosure.

The benefit of having access to evidence is that it may allow the investors to distin-

guish bad luck from bad behavior by the firm’s manager, and so its disclosure is always

optimally incentivized.This first observation, which is due to our optimal contracting ap-

proach, sets our analysis apart from the recent literature on dynamic evidence disclosure

with fixed managerial compensation.5 While in that literature bad news are not reported,

in our model all the realized evidence is disclosed. Of course, this implies that the optimal

contract must provide adequate incentives for such disclosures to happen.

Indeed, we find that the manager is optimally compensated for the disclosure of bad

news. The result provides a novel rationale for ‘pay without performance’. Existing ex-

planations emphasize either the capture of boards by powerful executives (e.g., Bebchuk

and Fried (2009)), or the need to motivate innovation by managers (Manso (2011)). Both

stories do not make a distinction between bad performance with or without evidence to

justify it. Our analysis suggests that the correlation between compensation and perfor-

mance should be negative when bad evidence is disclosed, and positive otherwise. In our

implementation, which follows DeMarzo and Fishman (2007), pay without performance

consists of remitting the firm’s short-term debt interest payment when the manager dis-

closes that the bad performance is due to a transitory shock beyond his or her control.

However, and perhaps at first sight surprisingly, this effect is counterbalanced by a

strictly higher interest rate faced by the firm both absent disclosure, and when cash

flows are high.6 Through the lens of our example, this means that while coaches are not

punished for a defeat that they can prove to be due to circumstances beyond their control

– such as an unusually high players’ fatigue – the coaches also face a harsher punishment

for a defeat that comes unwarranted, and they are rewarded less for their successes.

Interestingly, this ‘show it and prove it’ feature does not arise from the need to in-

centivize disclosure: at the optimal contract, the manager would have strict incentives

to disclose bad news even if no-disclosure lead to less harsh consequences. Instead, it

is driven by the investors’ desire to insure the firm against inefficient liquidation, which

is the negative consequence of bad luck. The firm’s capital structure and performance

involving unobservable effort. However, as is well known, the two problems share the same qualitative
predictions, and diversion is more tractable. This is the reason behind our modeling choice.

4All our results remain unchanged if evidence arises after the cash flows, and can certify them.
5See Acharya, DeMarzo and Kremer (2011), Guttman, Kremer and Skrzypacz (2014) and DeMarzo,

Kremer and Skrzypacz (2019) where managers are assumed to maximize the stock price of their firms.
6Variations in rates can be implemented as covenants on the firm’s debt (Smith and Warner (1979)).
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history determine its funding liquidity – that is, the amount of short-term funds it can

borrow. The funding liquidity of the firm optimally adjusts over time so that its marginal

value upon disclosure of bad news equals the expected marginal value across all other

states. It follows that the marginal value of liquidity is strictly lower (i.e., its level is

strictly higher) when bad news are disclosed, relative to when they are not, and that any

pay granted upon the disclosure of bad news implies a lower pay across all other states.

Consistent with the view that evidence serves as self insurance against inefficient liqui-

dation, on path the Pay-for-Performance Sensitivity (PPS) of the firm – which measures

in percentage terms how much its expected value changes with the realized cash flow –

decreases with the availability of evidence. This is intuitive, because pay-for-performance

is the reason why inefficient liquidation occurs in such a model. Absent evidence, the

PPS is a constant, which just makes the manager indifferent between diverting the cash

flows or not. Evidence enables to lower the PPS without generating diversion incentives.

In addition, and unlike in previous models, the PPS increases in the firm’s performance

history. This is because as high cash flows accumulate liquidity in the firm, the probability

of default decreases and evidence becomes less useful. The gap in compensation upon

a low cash flow with and without disclosure reduces progressively, until it completely

disappear at the dividend-payout boundary. Only at the boundary we observe the same

degree of PPS as in Biais, Mariotti, Plantin and Rochet (2007) or DeMarzo and Sannikov

(2006). This reconciles dynamic agency with the evidence in Bandiera, Guiso, Prat and

Sadun (2015) that high-powered incentives are used by relatively more profitable firms.

In our sport example, it means that high-powered cash incentives for coaches should

be used more, the better the past performance of their teams. Coaches who manage a

team that has been very successful in the past face a larger variation in their expected

compensation each game, relative to those who manage less successful teams. Such

prediction critically depends on the presence of disclosure opportunities.

Because the firm is protected by limited liability, investors cannot simply rely on cash

incentives in order to prevent diversion: they also need to liquidate their investment

upon a sufficiently prolonged stream of bad performance. Similarly, to guarantee that

a coach works in the interest of the team, a long streak of defeats should trigger the

termination of his or her contract. So we ask: does evidence also reduce the need for

liquidation, and therefore it lowers the firm’s default probability? As it turns out, the

answer depends on whether contracts are already in place, and there is some realized

history of past performance, or whether we are considering the initial stage, at which

contracts and information structures must be jointly designed.

Conditional on a given contract (or capital structure) and performance history, evi-
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dence reduces the probability that the firm will default. This follows immediately from

our previous result that the pay-performance-sensitivity drops. Because the manager’s

lifetime pay (or, in our implementation, the firm’s funding liquidity) is determined by its

performance history, a lower pay-performance sensitivity implies that the funding liquid-

ity level varies less, reducing default or the chance of exhausting the liquidity. Empirically,

this implies that in secondary markets, when the firm’s capital structure is unchanged,

credit spreads should be negatively associated with the frequency of voluntary disclosures.

However, when the joint design of capital and information structures is considered,

the probability of default may increase as the availability of evidence rises. Namely, the

investors may optimally reduce the initial funding liquidity granted to the firm, and in

so doing they set the firm on a path that may entail lower rates of firm survival. This

happens because the marginal value of granting funding liquidity to the firm falls in the

presence of evidence disclosure opportunities, as they help insuring against bad luck and

default. In other words, evidence is a substitute for funding liquidity in dealing with the

agency problems between investors and managers. Back to our sport example, this means

that turnover among coaches may also increase with better information technologies.

Specifically, three cases can arise. While the investors must always be better off with

greater evidence availability, the benefit for the manager and for the firm (whose value

is equal to the aggregate surplus generated) may vary. First, there is a win-win-win

scenario, in which evidence reduces the deadweight losses associated to default, and the

increased firm value is split between the manager and the investors. Second, there is a

win-lose-win scenario in which the probability of default falls, but so does managerial pay.

Third, there is a win-lose-lose scenario, in which the possibility to adopt the information

technology reduces managerial pay while it increases the probability of a future default.

In this scenario, evidence exacerbates the conflict between rent-extraction by the investors

and efficiency in the utilization of the firm’s information technology.

Because these three cases have widely different empirical implications, we dig further

into the conditions required for them to occur. We find that a firm’s profitability is

key in this respect. In particular, there exists a profitability threshold such that the

win-win-win case prevails for all firms more profitable than that at the threshold. High-

profitability firms are able to use evidence disclosure in order to decrease the risk of

default and termination, and both the firm’s manager and the investors benefit from

having access to it. This result is important to clarify the difference between our evidence

disclosure model and a typical monitoring setting. While in most monitoring models the

information would be used by investors to curb managerial pay, this need not be true

when the information technology is decentralized and the realized evidence needs to be
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disclosed. To our knowledge, we are the first to theoretically point out such distinction.

In the empirical literature, Mas (2016) shows that mandatory disclosure was associated

with increased managerial pay at the introduction of the 1934 Securities and Exchange

Act. However, we are not aware of work relating compensation to voluntary disclosure.

In contrast, the win-lose-lose case may occur at low profitability firms. Such firms are

relatively more likely to generate low cash flows at any given period. Therefore, absent

evidence disclosure, it is costly for the investors to aggressively bring them to liquidation

after a streak of bad performances. Evidence makes it more desirable for investors to be

aggressive, because liquidation only occurs when a bad performance is not accompanied

by managerial disclosure. Thus, default risk may rise with the availability of evidence.

It follows that, for the investors to be better off, managerial pay must drop. This could

be related to the recent surge in bonds default rates (e.g., Becker and Ivashina (2019)).

Our model delivers clear-cut predictions also on the capital structure side, because

disclosure opportunities affect both the firm’s leverage and its dividend payout policy. As

in all dynamic agency models, it is optimal to backload cash payments to the manager.

The firm issues dividends only after a sequence of positive shocks, which implies that

its dividend payout rates rise with its survival probability. Because firms that disclose

more frequently have higher survival probabilities – conditional on any given performance

history – it follows that they also display higher dividend payout rates. In contrast,

because leverage is the highest when the firm is close to default and termination, higher

survival probabilities imply lower long-run leverage ratios.

Empirically, these results suggest that studies of the real effects of disclosure should

pay attention to default risk, which is tightly correlated with a firm’s capital structure, in

addition to discount rates. In fact, while the existing empirical work uncovers a positive

causal effect of voluntary disclosure on the liquidity of a firm’s securities and on its cost of

capital,7 such effects might be mitigated by the cash flow channel we identified, especially

at low profitability firms, due to the higher default risk they face.

As for the patterns of technological adoption, the set of adopting firms consists of

those that experienced intermediate performance histories. The region is characterized

by two performance-related thresholds. Below the lower threshold, the value of the firm

as a going concern is too low to justify spending resources on the technology. Above

the upper threshold, the benefits are too low, as the firm is already far from its default

boundary. As the cost of the technology falls, the thresholds diverge and the adoption

7See Francis, Nanda and Olsson (2008), Balakrishnan, Billings, Kelly and Ljungqvist (2014) and
Boone and White (2015), and the surveys by Healy and Palepu (2001) and Leuz and Wysocki (2008).
Bertomeu and Cheynel (2016) survey theory work that interprets such findings in CAPM-like models.
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region expands. Importantly, this pattern of adoption is different from that of physical

investment options, such as those studied in DeMarzo, Fishman, He and Wang (2012).

While the value of physical options typically increases with past performance, the value

of information-related options peaks at intermediate performance histories.

Finally, modeling information technologies as options is useful to clarify that they

affect the valuation of both adopting and non-adopting firms. While the low-performance

firms condition their adoption on receiving a stream of positive cash flow shocks, the

high-performance ones keep the option as an insurance policy, intending to exercise it in

the future only if they receive a sufficiently negative cash flow shock. As this increases

valuations before adoption, to estimate the benefits of new technologies by comparing the

performance of adopters and non-adopters is methodologically flawed. The non-adopters

are fundamentally different from the firms that existed prior to the advent of the new

information technologies.

The paper unfolds as follows. Section 2 reviews the related literature. Section 3

presents the economic environment and the contract space. Section 4 considers two finite

horizons versions of our model. A one-period example shows how evidence is irrelevant

for static incentives, suggesting that, if evidence plays a role, it must be that it affects the

dynamic incentive constraints. A two-period example clarifies that some of our results

obtain in finite-horizon settings, but not all. It also conveys some intuition that helps

to understand the full model. Section 5 introduces the infinite horizon model. Section

6 discusses the impact of disclosure on the policy dynamics and on other variables of

interest. Section 7 shows the patterns of information technology adoption. Section 9 im-

plements our optimal contract by means of short and long-term debt, and equity. Section

8 discusses the initiation problem, when securities are issued. Section 10 concludes.

2 Literature Review

Our paper is related to several literatures. Theoretically, it builds on the dynamic agency

model developed by Clementi and Hopenhayn (2006), Biais et al. (2007) and DeMarzo

and Fishman (2007). A recent strand of papers on dynamic moral hazard introduced

information production and dissemination possibilities, and studied their consequences

on second best allocations (e.g., Fuchs (2007), Piskorski and Westerfield (2016), Smolin

(2017), Zhu (2018) and Orlov (2019)). The distinguishing feature of our model is that,

while other papers focus on monitoring technologies where the principal acquires infor-

mation directly, in ours the information is observed by the agent and it must be disclosed.

Because we model information systems as technologies that produce disclosure op-
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portunities for managers, à la Dye (1985) or Shin (2003), our work is also related to

the theoretical work on voluntary disclosure (e.g., Beyer and Guttman (2012), Acharya,

DeMarzo and Kremer (2011), Guttman, Kremer and Skrzypacz (2014), Marinovic and

Varas (2016) and DeMarzo, Kremer and Skrzypacz (2019)). While these recent papers

extended the Dye model dynamically, they differ from our setting in important ways.

First, managerial compensation is exogenous, whereas we consider optimal compensa-

tion. This implies that the equilibria they characterize feature partial disclosure, whereas

ours do not. Second, in some of these papers evidence is long-lived, and so they study

not only what is being disclosed, but also when. In ours, evidence is short-lived.

Our paper also relates to a recent literature that studies the heterogeneous effects of

IT on the cross-section of firms. In particular, Mihet and Philippon (2018) and Farboodi,

Mihet, Philippon and Veldkamp (2019) focus on explaining the role of size in shaping

adoption patterns and the consequences of adoption for the price informativeness of stock-

listed firms. Our work is complementary to this literature, in that it asks how these

technologies affect the disclosure patterns by managers and, ultimately, how they impact

the informational landscape in which firms operate and interact with outside investors.

Another related literature studies the consequences of real investment options for

firms in dynamic agency models (e.g., DeMarzo, Fishman, He and Wang (2012), Bolton,

Chen and Wang (2011)). Relative to this literature, we contribute by considering a

different type of option which, instead of directly impacting the cash flows, improves the

information available for the management to disclose. Contrary to the value of physical

options, which typically increases in the firm’s past performance, that on information-

related options is non-monotonic. It peaks at intermediate performance histories.

We also contribute to the literature emphasizing the possible negative real effects of

a richer information environment. Most work on this topic assumes that the principal

receives some information, but cannot commit to how the information is going to be used

in determining some interim action (e.g., Crémer (1995), Meyer and Vickers (1997), Prat

(2005) and Zhu (2018)). In contrast, in our model the agent receives private information

and has the possibility to disclose it, while the principal has full commitment power.

Finally, at a more abstract level, our work is related to the literature discussing the

role played by hard evidence in mechanism design. While this literature has flourished

since Bull and Watson (2004), including the contributions of Koessler and Perez-Richet

(2017), Hart, Kremer and Perry (2017) and Ben-Porath, Dekel and Lipman (2019), to

our knowledge we are the first to incorporate evidence in a dynamic agency setting.
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3 Environment

A firm produces i.i.d. cash flows xt ∈ {h, l} for t = 1, 2, .., T , where h > l > 0. Define

∆ := h − l, p := P (xt = h) ∈ (0, 1), and µ := E(xt). The firm is owned by a Principal

(P) – who represents the firm’s investors – and is operated by a Manager (M). Both P

and M are risk-neutral and discount future consumption at the same rate r ∈ (0, 1).8

Moral hazard. We introduce the possibility of moral hazard by assuming that

M privately observes the realized cash flows {xt}. By misreporting a good cash flow,

claiming it to be bad, M can divert ∆ output and obtains a private benefit of δ := λ∆,

where λ ∈ (0, 1] represents the severity of the moral hazard problem.9 By applying the

revelation principle, we can restrict communication protocols to direct messages that

report xt, and focus on the implementation of truthful reporting.

Evidence. We assume that P can choose make a one-time investment in an infor-

mation technology that will produce evidence et ∈ {g, b} each subsequent period with

probability π̂ ∈ (0, 1). To ease notation, π in the paper denotes a random variable that

takes values of either 0 or π̂, depending on whether the technology has been adopted

(π = π̂), or not (π = 0).10 To make this investment, P must spend a fixed cost of c ≥ 0.11

Evidence consists of verifiable information that cannot be manipulated, and which per-

fectly predicts cash flow xt: good evidence implies high cash flows, while bad evidence

implies low cash flows. Thus, IT adoption corresponds to the exercise of a one-time

American option with infinite maturity that cannot be reversed, with strike price c.

Once the option is exercised, P expects evidence to be available with probability π̂,

but she never knows whether M acquired some evidence or not. So, at each date t,

M chooses whether or not to voluntarily disclose the realized evidence to P. We denote

the disclosure action by at ∈ A := {d, n}, where d stands for disclosure and n for non-

disclosure. If M discloses the evidence, investors will predict the cash flow accurately.

That is, p(xt = h|et = g) = p(xt = l|et = b) = 1.12 Because (i) disclosure is always

incentivized, and (ii) the availability of evidence is conditionally independent from the

realized cash flow, no-disclosure has no impact on the investors’ beliefs. That is, absent

evidence disclosure, P predicts that cash flows are high with probability p.

8Common discounting is not needed to derive our qualitative results, but it simplifies the arguments.
9The notation here is not redundant: the effects of ∆ on allocations and contracts are slightly different

from those of λ, in ways that we will emphasize while discussing the comparative statics.
10The fact that in the absence of technological investment π = 0 is just a normalization. All our results

go through unchanged if we assumed that, absent investment, the firm would have some positive π′ < π̂.
11The cost can be thought of as the presented discounted value of the setup and maintenance expenses.
12Since the effects of evidence on our outcomes of interest are already non-monotone and complex with

perfect evidence, it does not seem necessary to also consider imperfect correlation in this model.
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Contracting. To maximize investors’ value, P offers M a contract that specifies, for

every history of reports and disclosures, the probability of liquidating the firm θt ∈ [0, 1],

the cash compensation ut ≥ 0 and the delayed compensation wt ≥ 0. In the first best

case, the firm is never terminated and firm value is s∗ := µ(1+r)
r

. If the firm is terminated,

both parties get their outside option payoff, which is normalized to zero. Figure 1 shows

the timing of events in a generic period t, prior to the exercise of the investment option.

Figure 1: Timing in period t, prior to exercising the option

t

P exercises or delays

the option to invest

termination

with prob. θt

M voluntarily discloses M reports cash flow M is paid ut

t+ 1

4 Finite-horizon model

To highlight the key driving forces behind our results, we start with a static and a two-

period versions of the model. For simplicity, we set r = 0 in this section.

Figure 2: Event tree of static setting

d

n

d

h

h

l

l

udh

unh

disclosure incentive

unl

udl

disclosure incentive

diversion incentive

One-period setting. Figure 2 draws the event tree when T = 1. The set of possible

outcomes is H1 := {dh, dl, nh, nl}, and cash compensations to M are denoted by ui, for

i ∈ H1. The contract must provide two kinds of incentives: (i) to prevent the agent from

diverting cash flows, which requires unh ≥ δ + unl; (ii) to disclose information, which

requires both udh ≥ unh and udl ≥ unl. Trivially, it is optimal for P to set unl = udl = 0

and udh = unh = δ, and since c > 0 the option is never exercised.
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Two-period setting. It follows from the one-period case that at t = 2 evidence is

irrelevant. So, the set of relevant final histories is H2 := {ahh, ahl, alh, all}a∈A, where

the first element a ∈ {d, n} denotes M’s disclosure action in the first period; the second

and third elements denote the t = 1 and t = 2 realized cash flows, respectively. As in

most dynamic agency models (e.g., Biais et al. (2007)), committing to liquidate the firm

when x1 = l may be optimal, because it alleviates the diversion problem and reduces the

rents required for incentive compatibility to hold. In addition, it is trivial to show that

it is always optimal to delay M’s compensation to the terminal nodes, at t = 2.

As we proceed in the infinite horizon case, we break down the analysis in two parts: in

the first, we characterize the optimal contract conditional on a given evidence-availability

π ∈ {0, π̂}; in the second, we compare the case of π = 0 (no adoption) with the case of

π = π̂ (adoption), and we derive the optimal adoption decision. Note that because T = 2,

and evidence can only be useful at t = 1, adoption is never delayed in the two-period

model. Either the option is exercised at t = 0, or it will never be exercised.

Proposition 1. If T = 2, there exists a threshold π̄ < 1 such that, for a ∈ A:

(a) If π̂ < π̄, the firm is never terminated. M’s compensation is uahh = (1+p)δ
p

, ualh = δ;

(b) If π̂ > π̄, then the firm is terminated at t = 1 when a low cash flow is reported and

there is no disclosure. M’s compensation is uahh = δ
p
, udlh = δ;

(c) If π̂ = π̄, the optimal contract is any mixture of the above ones.

Moreover, π̄ > 0 if and only if p < p̄.

Proposition 8 clarifies a few implications of evidence on contracts and allocations.

First, evidence is only useful if the firm is terminated with some probability at t = 1,

when the low cash flow arises. In case (a), when termination does not occur, both the

firm and the investors value do not depend on π̂: evidence is irrelevant again.

Second, moving from π = 0 to π = π̂ we can have one of three scenarios:

1. For highly profitable firms (i.e., p ≥ p̄) the probability of default drops from (1− p)
to (1−p)(1− π̂), while M’s compensation rises from pδ to pδ(1 + (1−p)π̂). P gains

because the revenues from a lower default probability more that offset the rise in

managerial rents. This is the scenario we labelled win-win-win;

2. For low profitability firms (p < p̄) if the technology seldom generates evidence (i.e.,

π̂ < π̄), the probability of default was and remains zero, and nothing changes.

Jumping ahead for a moment, it is easy to see that such technologies would never

be adopted for any positive cost c > 0;
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3. For low profitability firms (p < p̄) if the technology frequently generates evidence

(i.e., π̂ ≥ π̄), the probability of default rises from zero to (1− p)(1− π̂), while M’s

compensation drops from 2pδ to pδ(1 + (1 − p)π̂). P gains because the revenues

from lower managerial rents more than offset the increase in the default probability.

This is the win-lose-lose scenario: both M’s compensation and the surplus fall.

Summing up, while the investors always benefit from a better information technology –

that is, a higher π – both M’s compensation and the probability of default may rise or

fall with it. These scenarios are depicted in Figures 3a and 3b, where UM denotes the

expected managerial compensation at t = 0, and UP the expected principal’s payoff.13

To measure cash incentives, we plot the Pay-Performance Sensitivity (PPS), defined as:

PPS :=
E(UM |x1 = h)− E(UM |x1 = l)

∆
(1)

The PPS measures in percentage terms how M’s compensation changes with firm perfor-

mance. In both figures, the PPS weakly drops with π, clarifying that the role of evidence

is to dampen cash incentives by insuring both agents against bad states of the world.

The two-period model clarifies that evidence reduces the use of cash incentives, and

it has heterogeneous effects on both the firm’s value, and its probability of default. Nev-

ertheless, some of our results cannot be understood by means of such a simple model.

For instance, conditional on termination happening on-path, M’s expected compensation

when bad news are not disclosed at t = 1 is always equal to zero, irrespective of π. In

contrast, as we shall see, in the full model such compensation decreases with π.

13Evidently, the sum of the two denoted the economic surplus generated by the firm, which is equal
to the first-best surplus minus the deadweight losses due to termination.
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Figure 3: Comparative statics in the two-period model
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(b) Low Profitability Firms: p ≤ p̂

5 Infinite-horizon model

In this section, we first formulate the firm’s problem in the infinite-horizon environment,

and then characterize policies and their dynamic features.14

5.1 Contracting

As is well known, when shocks are i.i.d., the agent’s continuation utility v is a state

variable that summarizes all relevant information in any given history. For any state v,

the contract specifies the probability of liquidating the firm at the beginning of the period

θ, and then compensates M either with cash, or with promised utility contingent on M’s

actions. When evidence is disclosed, the contract pays ud = (udh, udl) ∈ R2 to M and

promises continuation utility wd = (wdh, wdl) ∈ R2, depending on whether the high or

the low cash flow is reported. Similarly, when no evidence is disclosed, the contract pays

M cash un = (unh, unl) ∈ R2, and promises continuation utility wn = (wnh, wnl) ∈ R2.

Whether it is worthwhile to invest in the costly information technology or not, and if

so, when to make the investment, all depend on the value that this option brings to the

firm. To evaluate the moneyness of this evidence-generating option, we first consider the

optimal contracting for the firm given the investment has already been made. We then

step back and determine the optimal option exercise patterns.

14More rigorous arguments which guarantee that the recursive representation of our problem is appro-
priate are standard and so we leave them to the Appendix.
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Given that the investment in the information technology has been made, evidence

regarding future cash flows arrives with probability π̂. Because our programming that

solves the firm’s policies in this scenario also applies to the scenario where evidence never

arises (or the investment option is never exercised), we use the variable π to represent

both, with the indication of π = π̂ for the former and π = 0 for the latter.

Before we define the firm’s problem, we consider the diversion and disclosure incentive

constraints. First, since the manager can always conceal evidence, any voluntary disclo-

sure has to be contractually incentivized. Contracts may disregard evidence in some

states of the world. However, because of Holmstrom’s informativeness principle, it only

makes sense that evidence disclosure is either promoted, or overlooked; it should never

be actively prevented. That is, whenever the manager obtains good evidence:

udh +
wdh

1 + r
≥ unh +

wnh
1 + r

(ICg)

Likewise, whenever the manager obtains bad evidence we have:

udl +
wdl

1 + r
≥ unl +

wnl
1 + r

(ICb)

Second, when the manager does not disclose good evidence, he can always report a low

cash flow and divert ∆. So, the diversion incentive compatibility demands:

unh +
wnh

1 + r
≥ δ + unl +

wnl
1 + r

(ICn)

Any feasible contract must fulfill its promises and deliver the given continuation value.

In other words, the optimal contract satisfies a promise-keeping constaint which requires:

v = (1− θ)
[
πEd

(
ud +

wd

1 + r

)
+ (1− π)En

(
un +

wn

1 + r

)]
, (PK)

where, to ease notation, we define M’s expected utility conditional on evidence disclosure

as Ea
(
ua + wa

1+r

)
= p(uah + wah

1+r
) + (1− p)(ual + wal

1+r
) for a = d, n. In addition, contracts

must satisfy limited liability, i.e.:

udh, unh, udl, unl ≥ 0 (LL)

Because the agents share the same discount factor, it follows that the optimal contract

from P’s perspective also maximizes firm value (i.e., surplus), given a utility v promised
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to M. 15 Thus, the optimal contract solves the following dynamic program:

s(v) = max
θ,uj ,wj

(1− θ)
{
µ+

1

1 + r

[
πEd(sd) + (1− π)En(sn)

]}
(S)

s.t. (PK), (ICg), (ICb), (ICn), (LL),

where s(v) denotes the expected firm value, sa = (s(wah), s(wal)) for a = d, n, and

Ea
(
sa
)

= ps(wah)+(1−p)s(wal) denotes the expected firm values conditional on possible

disclosure actions.

The objective function of (S) reflects the fact that (i) with probability θ, termination

takes place before the subsequent evidence and cash flow realize, in which case the firm’s

value drops to zero; and (ii) with probability (1− θ) the firm is not terminated, in which

case the firm’s value depends on both whether M receives evidence or not, and whether

the cash flow is high or low. Because the two events are independent, we can express the

expected firm value as that in the objective function of program (S).

On the one hand, program (S) with π = π̂ solves the firm’s problem given the in-

vestment option has already been exercised. On the other, if π = 0, the program solves

the case where the option is never exercised (or, equivalently, there is no option). This

is because, in the latter case, the only relevant control variables are those conditional on

no-disclosure. Thus, we use s(v; π̂) and s(v; 0) to denote the value functions in program

(S) corresponding to these two possible cases.

5.2 Investment option

We next analyze the investment decision, i.e. the decision of whether and when to exercise

the investment option. Suppose that, for a given history represented by v, the firm has

not exercised the option yet. The firm’s value in this scenario is denoted by f(v) and,

evidently, no evidence will be disclosed today. If the firm is not terminated right away

– which occurs with probability (1 − θ) – it obtains a cash flow today and proceeds to

tomorrow’s state, either wnh or wnl, depending on the cash flow reported by M.

Come tomorrow, the firm can either invest c and obtain the value of s(wni) − c (for

i = h, l) from the subsequent date onwards, or delay investment again and obtain f(wni).

It is easy to see that when s(wni)− c > f(wni), the firm exercises the investment option

tomorrow. Otherwise, it waits until at least one more period to invest. Thus, the firm’s

15As is well known, this does not imply that a contract that maximizes P’s expected utility is socially
optimal: in general, P starts the contract from a socially suboptimal initial condition.
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problem when the investment has not been undertaken yet can be formulated as follows:

f(v) = max
θ,uj ,wj

(1− θ)
{
µ+

1

1 + r
En
[

max(fn, sn(π̂)− c)
]}

(F )

s.t. (PK), (ICn), (LL)

where fn = (f(wnh), f(wnl)), and π = 0 in (PK).

5.3 Initiation and payout

When the firm is initiated at time zero, P promises a continuation utility v0 to maximize

its expected profits over the lifetime of the firm. That is,

v0 = arg max
v
{max[f(v), s(v; π̂)− c]− v} (2)

Clearly, at the outset, the firm may either exercise the option right away or wait to make

the investment later, after some history of past performance.

Because termination is inefficient, it is optimal to delay M’s cash compensation until

the continuation utility v is sufficiently large. Without loss of generality, we shall assume

that M is paid by cash whenever the firm is indifferent between paying him or her right

away, or delaying the payment. Formally, we define the cash payout boundary as the

smallest continuation utility where the firm value reaches its first best. That is,

v̄ := inf{v : f(v) = s∗ or s(v; π̂) = s∗} (3)

The definition implies that the firm value (with or without evidence) is strictly less

than the first best s∗ before the continuation utility reaches v̄. While in general both the

payout boundary and M’s payoff dynamics may depend on the availability of evidence,

the next result shows that actually the value v̄ is a constant, irrespective of evidence

availability. In contrast, the cash compensation granted to the manager varies with both

the option exercise strategy, and the level of π̂ in the short-run.

Proposition 2. The cash payout boundary is:

v̄ = r−1(1 + r)pδ. (4)

Moreover, for a ∈ {d, n}, the optimal cash compensation is

ual(v) = 0, uah(v) = max
{

(1 + r)δ − (1 + r̂)(v̄ − v), 0
}

(5)
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where r̂(π) := r
1−(1−p)π .

Proposition 2 shows that the payout boundary v̄ does not depend on the possibility of

generating and disclosing evidence. Even when the cost of generating evidence is infinitely

large (or π̂ is infinitely small or zero), the boundary does not change. At. the cash payout

boundary, no cash payment is made to M whenever a low cash flow is reported. When

the firm is one-step away from v̄, M receives cash compensation upon reporting a high

cash flow and such payment falls with the availability of evidence π. However, when the

firm reaches v̄, the cash compensation becomes independent from π. This is intuitive: the

payoff boundary v̄ is the smallest continuation utility at which all incentive constraints

cease to bind. Once the boundary has been reached, termination never occurs moving

forward, and therefore evidence is no longer useful.

6 Impact of evidence disclosure

The decision to invest in the information technology depends on the value added by the

availability of evidence IT brings about, net of the strike price c. In this section we first

characterize the firm’s problem given that the investment has already been made. In

the next section we examine which firms exercise the option and under what conditions

they exercise. To highlight the role of evidence disclosure, we consider what happens

if the evidence is more or less available (the intensive margin), and then contrast the

policies with the benchmark case as in DeMarzo and Fishman (2007) where evidence is

never available (the extensive margin). This benchmark case corresponds to our model

in which the option is – perhaps suboptimally – never exercised.

6.1 Policy characterization

We first characterize the firm’s problem (S). Recall that it solves two possible scenarios:

the option already exercised (π = π̂), and the option never exercised (π = 0).

Before reaching the payout boundary, M is incentivized by variations in her promised

continuation values. If the continuation value grows high enough to reach v̄ , the firm is

never terminated, all incentive constraints become slack, and the firm’s value reaches the

first best. When M’s continuation value is at intermediate levels, termination may occur

after a sequence of low cash flows that are not accompanied by voluntary disclosures

by the managers. When the continuation value is low enough, the only way to align

incentives and keep the compensation promises is to stochastically liquidate the firm at
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the beginning of the period. To characterize the dynamics, we define the thresholds such

that no termination can possibly occur in the next n periods to be:

vn := inf{v : no termination in at leastn periods}, for n = 0, 1, 2...

These values correspond to the lowest continuation values such that the firm can

survive with certainty for at least n periods. For example, if v > v1 the firm will not

be terminated in the current (or one) period, but may be terminated in the next period.

These thresholds are related to the previous definitions of termination probability θ and

the payout boundary v̄. Specifically, stochastic termination at the beginning of any period

is positive (θ(v) > 0) if and only if v < v1. In addition, the payout boundary v̄ is the

limit of this sequence of thresholds v∞; indeed, termination never occurs if v ≥ v̄.

Because the firm can be terminated, any randomization of continuation utility is costly

for both parties, implying that the firm’s value s(·) is concave. Using concavity and the

optimal conditions of the firm’s problem (S), we can find out which constraints bind and

derive the optimal policies.

Lemma 1. For any v < v̄ in the firm’s problem (S), the constraints (ICg) and (ICn)

bind while (ICb) holds as strict inequality.

One can immediately see that, contingent on the high cash flow being reported, ev-

idence is payoff irrelevant: wdh = wnh. In other words, as long as the investors receive

a high cash flow, the payoffs to both M and P are not affected by evidence disclosure.

Contingent on a good performance being reported, M does not divert and so there is no

need to further condition M’s payoffs on evidence disclosure. Thus, in the rest of the

paper we do not distinguish M’s payoff across states dh and nh. Accordingly, we denote

wh and uh as the continuation value and the cash payment, respectively, conditional on

cash flows being high. Notice that this property would not generally hold in a monitoring

setting, in which P observes the evidence directly. In that case, P could further reduce

the payment to M when evidence is available, without violating any constraint.

In contrast, the optimal contract provides strict incentives for M to disclose bad news:

i.e., wdl > wnl. Punishing M for a bad performance is costly to P because it induces more

inefficient termination. If the evidence shows that the bad performance is not caused

by M’s behavior, but instead by bad luck, then M should not be punished. Promising

M higher utility in the state dl does not worsen the diversion problem, but improves

efficiency by reducing the probability of termination. In this sense, pay for bad luck is

not driven by the need for the principal to incentivize disclosure, but rather it is directly

beneficial to the investors because it enables to lower both the volatility of the agent’s
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continuation utility, and the pay-for-performance sensitivity. As we mentioned in the

introduction, this is akin the solution to a classical insurance problem for a fixed budget.

Given the active constraints and the optimality conditions of the firm’s problem (S),

we obtain an explicit solution for the optimal policies:

Proposition 3. The optimal policies for the firm are as follows:

• For v ∈ (0, v1]: θ = v1−v
v1

, wnl = 0, wdl = v1, wh = min
{
rv̄
p
, v̄
}

;

• For v ∈ (v1, v̄]: θ = 0, wnl = v − r̂(v̄ − v), wdl = v, wh = min
{
wnl + rv̄

p
, v̄
}

;

• The n-period termination thresholds are vn(π) = [1− ( 1
1+r̂

)n]v̄.

If stochastic termination does not occur at the beginning of the period, the policies

wi(v) for i ∈ H1 are the same as wi(v
1). In addition, firm value in this region is linear.

Given this characterization, we clearly see that – after a low performance – the contract

possibly promises the manager a higher continuation utility when bad news is disclosed

(wdl = v1 > v), deviating significantly from the case of π = 0 considered in previous work.

In this region, whenever M discloses evidence of transitory bad luck P compensates for

disclosure by raising the promised utility to v1, independently from the continuation

utility entering the period. The reward depends on v1 − v.

In the region above v1, M is still rewarded for disclosing bad luck: wdl = v.16 The

contract forgives the low performance today, and starts tomorrow as if the history is the

same as before the current low cash flow. This mechanism does not affect M’s diversion

incentives, because M cannot fabricate evidence. Moreover, because the volatility in M’s

continuation utility is costly for investors, it is optimal to set wdl as close to v as possible.

Finally, as standard, the optimal contract rewards good luck. Proposition 3 shows

that the ranking of continuation utility does not depend on the levels of v and π. M gets

the largest continuation utility contingent on high performance, the lowest one contingent

on low performance and no disclosure, and the middle one contingent on disclosure of bad

news. This pattern implies that, on the fastest route to termination, M never discloses

evidence and always reports low cash-flow. So, the n-period threshold can be explicitly

derived from the policy functions. Evidently, both the termination thresholds and the

policy dynamics depend on M’s disclosure behavior and on the availability of evidence.

16Notice that to keep the continuation utility fixed across times effectively requires a payment from P
to M, because of the time value of money.
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6.2 Comparative statics

Having characterized the optimal policy functions, we can examine how firm value, de-

fault risk, managerial compensation and the firm’s dynamics depend on the quality of

the information technology, that is, on the probability that the information technology

produces evidence. This analysis requires a dynamic model because, regardless of the

initial conditions of the problem, any v ∈ [0, v̄] is on-the-equilibrium path. That is, there

always exists a sequence of shocks that can take the firm from v0 to any such v. Before

presenting the results, it is useful to provide a formal definition of both credit spreads

and Pay-Performance Sensitivity (PPS). We follow the literature and define PPS as:

PPS :=
E(v |x1 = h)− E(v |x1 = l)

∆
(6)

This measure indicates – in percentage terms – how managerial compensation changes as

a function of the firm’s performance.

Turning to credit spreads, which measure the firm’s default risk, the standard defini-

tion is: Credit spread = (1−recovery rate)×Pr.[default], where the recovery rate denotes

the fraction of the firm’s value recovered by creditors upon default and/or liquidation.

Because we normalized the recovery rate to zero, the expression simplifies to:

Credit (or CDS) spread = 1− s

s∗
, (7)

where s∗ denotes the first best value of operating the firm, and s denotes the value at the

constrained best, as implemented by our optimal contract (i.e., the sum of P’s and the

M’s expected payoffs). Importantly, this is distinct from the agency cost, which would

consist in the sum: Credit spread + managerial rents.

Proposition 4. When the availability of evidence π̂ rises, the optimal contract exhibits

the following comparative statics, for any given v < v̄:

(a) firm value s increases or, equivalently, its credit spread falls;

(b) pay-performance sensitivity falls, while it increases with v for any given π̂

(c) wh and wnl both weakly fall, while wdl stay constant;

(d) the n−step termination thresholds vn fall, for n = 1, 2, ...

To discuss Proposition 4 and the economic intuition behind it, start from claim (c),

which analytically illustrates the properties of the policy function when the disclosure
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frequency π varies. The managerial payoff wdl either remains the same as the beginning of

period utility v, or it jumps up to v1, regardless of the level of π. The diversion constraint

binds, establishing that the gap wh − wnl must be constant and equal to (1 + r)δ. So,

from the promise-keeping constraint, we know that both wh and wnl must fall (weakly

if v < v1), because the continuation utility is more likely to stay at v. This is akin the

redistribution of income across states in an insurance problem. Figure 4 illustrates this

pattern of how policies move as π increases for a given value of v. As π increases, the

continuation utility is less likely to move downward, but its lowest value becomes worse.

(1−
p)(1−

π)

v

wh

wdl

wnl

(1−
p)(1−

π ′)

w′h

w′dl

w′nl

π π′ > π

x

x

vv

p p

(1− p)π (1− p)π′

Figure 4: Impact of Evidence on Managerial Payoff

We can explicitly characterize the firm’s PPS from Proposition 3 as:

PPS = λ− πr̂ [v̄ −max(v, v1)]

(1 + r)∆
(8)

Obviously, this measure depends on both v and π̂. Two effects drive the PPS in opposite

directions. While pay for bad luck dampens it, the reduction in wnl serves an offsetting

role. However, as claim (b) of Proposition 4 states, the dominant effect is always for

evidence to lower the PPS, for every v. This is not surprising, as PPS is a necessary evil

of optimal contracts: it prevents diversion, but it produces a positive default probability.

An example is displayed in Figure 5. When π = 0, the PPS equals λ, regardless of v.

This result holds in existing dynamic agency models without evidence – e.g., DeMarzo

and Fishman (2007). For π > 0, the PPS is strictly lower than λ for every v < v̄.

The second part of claim (b) states that – as can be seen from Figure 5 again – the

PPS increases with v, converging to λ as v approaches v̄. To understand this result, first

note that evidence has no effect at the boundary v̄, where the probability of default drops
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to zero. Thus, wdl and wnl converge to the same value at the boundary. Second, observe

that all the ws are linear in v, and the gap between wh and wnl is a constant independent

from v. Because both increase with v at a slope strictly higher than one, and which

depends on π, it follows that as the gap between wdl and wnl shrinks, the PPS must

increase. Empirically, the two predictions that emerge are that: (i) better information

technologies should lower the use of high-powered incentive compensation in general; and

(ii) the effect should be stronger at firms that are experiencing low performance.

v̄ v

PPS(v|π)

π = 0
π = 0.5
π = 0.9

Figure 5: Pay-for-Performance Sensitivity

Once we established that evidence reduces the pay-performance sensitivity, it is not

surprising that it increases firm value by reducing the probability of default for every

v < v̄, as claimed in part (a) of Proposition 4 and plotted in Figures 6 and 7 for some

numerical simulations. Indeed, the only reason why the probability of default is positive

in such a dynamic agency model is that the optimal compensation requires to be tighten

to the firm’s performance in order to prevent cash diversion. The figures stress this point

simulating a set of possible histories for a cross section of firms that are identical in all

dimensions, except for having different technologies for evidence disclosure.
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Figure 7: Simulated termination Probability

Finally, part (d) of Proposition 4 shows the downside of evidence: the n-period termi-

nation thresholds vn all increase as evidence become more available. For a cross-section

of firms starting at the same state v, the shortest time to be terminated drops as π rises.

In other words, on the shortest way to termination, better evidence implies faster ter-

mination. In contrast, the quickest time to reach the cash payout boundary lengthens

as π rises. These patterns are plotted in Figure 8. According to the characterization

in Proposition 3, we know that the fastest way to termination on the equilibrium path

occurs when a firm never discloses evidence and experiences a sequence of low cash flows.
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Figure 8: Simulated convergence time toward the two boundaries

7 Investment option

The value of evidence in our model comes from two channels. First, as described before,

the availability of evidence increases firm value by avoiding the inefficient punishment of

underperforming managers. Second, because the value of evidence is endogenous and it

varies with M’s continuation utility, delaying the payment of the adoption cost c > 0 can

be valuable to the firm. Clearly, if the investment cost is too large, the option will never

be exercised. Because s(·) is continuous in all arguments, and v belongs to a compact

set, we can define the largest cost at which the option can be exercised as:

c̄ := max
v
{s(v; π̂)− s(v; 0)} (9)

Moreover, the option is not exercised right away either in the region close to v̄ or in the

region close to 0. Accordingly, there are two thresholds that reflect these two regions.

vl = inf
v
{f(v) ≤ s(v; π̂)− c}, and vh = sup

v
{f(v) ≤ s(v; π̂)− c} (10)

Proposition 5. The threshold cost is c̄ > 0. Both c̄ and vh increase in the evidence

availability π̂, while vl decreases in π̂. Furthermore, vh decreases in the investment cost

c, while vl increases in c.

If the firm never exercises the investment option, its value is s(v; 0) given a history

represented by v. Obviously, the firm’s value with the investment option f(v), as defined

in (F ), is no less than its baseline value of s(v; 0). Therefore, the value of exercising
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the option s(v; π̂)− f(v) is smaller than s(v; π̂)− s(v; 0), which is smaller than the cost

if c > c̄. Hence, the option is never exercised. The value c̄ depends on π̂ and other

parameters such as the severity of agency λ, the profitability of the firm p, and so on.

When c < c̄, the investment option can possibly be exercised in some state v. When

v is close to v̄, the probability of default is very small. Thus, the value of evidence is

fairly small and f(v) gets close to the first best level s∗, which is strictly larger than the

value of exercising the option right away s(v; π̂) − c. When v is close to 0, instead, the

firm’s value is so small that the value of exercising the option right away (i.e., s(v; π̂)− c)
is either tiny or negative. The following result summaries the patterns of adoptions as a

function of past firm performance v at the optimal capital structure .

Proposition 6. The firm never exercises the investment option if c ≥ c̄. Otherwise,

there exists a nonempty interval v ⊂ (vl, vh) where investment option is exercised right

away, while the option is delayed for v ∈ [0, vl] ∪ [vh, v̄].
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Figure 9: Option Exercise Region

Figure 9 illustrates the result of Proposition 6. It plots a numerical example of different

firm values over continuation utility when c < c̄. The green line plots the firm value if

the option is never exercised which is s(v; 0) or the case of DeMarzo and Fishman (2007).

The blue line plots the firm value if the investment option is exercised right away which is

s(v; π̂)− c. The red line plots the firm value f(v) of delaying the investment. Investment

is made if v ∈ (vl, vh), and delayed if v ≥ vh or v ≤ vl. The difference between the red and

green line in Figure 9 reflects the option value. This difference is large at intermediate
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levels of v, because in these states of the world the firm is more likely to exercise the

investment option eventually. On the left and right tails, this difference shrinks, because

the firm is likely to be terminated or to reach the first best, not exercising the option.

Proposition 5 shows that if evidence is more available, then the firm is more likely to

exercise the investment option overall, and the region of delay to invest shrinks. If instead

the investment cost is higher, then the firm is more cautious, or more likely to delay the

investment until its accumulative performance moves to a smaller middle range.

8 Joint design of information and capital structures

Now that we have characterized the optimal contract, we can examine the agent’s rent,

the enterprise value, and the default probability at the issuance date. In particular, we

analyze how these values change as the cost of adopting the technology c varies. The

analysis in the previous sections was conducted for a given v, so it was implicitly treating

any history as equally likely, irrespective of the firm’s characteristics. Now, instead, we

jointly solve the contract and information design problems and so we explicitly account

for the likelihood that any given history will arise as a function of the firm’s covariates

and the information technology it has access to.

In general, the time-zero properties are hard to characterize in any dynamic agency

model, because they reflect the expectation of future firm performance and evidence

disclosure. The firm’s optimal starting point – which we labelled v0 and represents its

initial funding liquidity – depends on the marginal value of increasing M’s rents to the

enterprise value. We find that, as evidence becomes available, this marginal value at v0

can be either larger or smaller. On the one hand, for any v, better evidence implies lower

default probability and so there is a greater surplus to be split between the firm and the

investors. On the other, because evidence insures against bad luck, it reduces the value

of providing a higher degree of funding liquidity v0 to the firm in the first place. In other

words, evidence substitutes cash as a means to solve the agency conflict. Which effects

dominates depends on parameter values, as the next proposition states and Figure 10

depicts for a numerical simulation.

Proposition 7. There are two profitability theresholds p ≤ p̄ ∈ (0, 1) such that:

(i) if p ≤ p, then at the issuance date, the manager payoff v0, and the firm value

max{f(v0), s(v0; π̂)− c} can both increase or decrease in the investment cost c;

(ii) if p > p̄, then at the issurance date, the manager payoff and the firm value both

decrease in the investment cost c.
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It is not hard to see that, as generating evidence becomes cheaper, the surplus can rise.

This is because the investors have an additional channel to govern the agency conflict

vis à vis the firm’s management. However, the opposite is also possible, and credit

spreads may actually increase as disclosure opportunities improve. That is, managers

who are expected to have access to better evidence may actually be worse off than the

less informed ones, and the firms they run may be less likely to survive in the long run.
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Figure 10: Credit Spreads and Investor Value

Intuitively, this occurs because to incentivize disclosure and prevent diversion P faces

the trade-off of either loading on M’s rents or raising the termination odds, both of which

are costly. When the firm is likely to obtain low cash flows, the chance of terminating the

firm is high and therefore termination is more costly. If the investment cost is c > c̄, the

optimal policy loads more on managerial rents (larger v0). As the cost drops, evidence is

more likely to be produced and disclosed, which alleviates the termination concern. So

the optimal policy loads on less rents (lower v0).

To sharpen our understanding the consequences of the joint design of capital and

information structure on investors’ and managers’ payoffs, as well as on the firm’s credit

spreads, we can revisit the two-period model. Recall that in such model an exogenous

shift from π = 0 to some positive π̂ could either increase or decrease the credit spreads,

depending (among other things) on the firm’s profitability p. Now, we ask what happens

when such shift is endogenous, that is, when the adoption decision is optimal and the

cost of adoption is explicitly considered. Of course, since termination may only occur at

t = 1, the option would never be exercised with a delay, after t = 0. Thus, we only need

to characterize whether or not the option is exercises right at the outset.

Proposition 8. If T = 2, there exists a c̄ such that if c ≥ c̄ the option is never exercised,

while if c < c̄ there exist two profitability thresholds p and p̄ such that p < p̄ and:
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(a) If p ∈ [p, p̄], the option is exercised and the probability of default is (1− p)(1− π̂);

(b) If p < p, the option is not exercised and the firm’s probability of default is zero;

(c) If p > p̄, the option is not exercised and the firm’s probability of default is 1− p.

Because ∂p/∂c > 0 and ∂p̄/∂c < 0, a reduction in the strike price of the option c increases

the probability of default of low profitability firms, while it increases the probability of

default of high profitability firms.

In the two-period case, evidence might enable P to distinguish bad luck from bad

behavior in the first period, and it affects the optimal termination policy. Figure 11

shows that the option to invest at a strike price c and produce evidence with probability

π attracts firms that are neither too profitable (p ≤ p̄), nor too unprofitable (p ≥ p).

When the two value functions (conditional on whether the option is exercised or not) are

tangent, the option is only exercised by firms with p = p̂. If the cost drops to c < c̄, the

set of firms that exercise the option expands to p ∈ [p, p̄]. High profitability firms choose

not to invest and terminate when x1 = l. Low profitability firms, in contrast, never

terminate and do not exercise the option either. If c > c̄ the option is never exercised.

Figure 11: The set of firms that exercise the option in the two-period model
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Thus, a reduction in the strike price of the option c leads to increased adoption

and more disclosure by both profitable and unprofitable firms. Figure 12 shows that

its effect on default probabilities and credit spreads is heterogeneous across firms. For

high-profitability firms that switch to exercising the option (right-panel), default prob-

abilities decrease as disclosure avoids inefficient termination. For low-profitability firms

that switch (left-panel), the opposite occurs. While at a high cost c they had a low (zero)
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default probability, as c drops evidence provides a tool for P to reduce the rents paid to

M, while not defaulting the firms when disclosure occurs. As a result, the firm’s default

probability rises. Together with the cost c, this amounts to an increase in the deadweight

losses and a reduction in the social surplus, even though it increases the investor’s payoff.

Figure 12: Values of adoption in the two-period model

9 Capital Structure Implementation

This section implements the optimal contract using standard financial securities. To

facilitate comparison with dynamic moral hazard models that do not have the possibility

of disclosure (e.g., DeMarzo and Fishman (2007)) the securities in our implementation

only include equity, long-term debt, and a credit line (short-term debt).

The long-term debt claim is a perpetuity that pays a fixed coupon every period. The

credit line defines the amount of credit that can be withdrawn by the firm anytime within

the (endogenous) limit z. The firm’s debt capacity, which is the difference between the

credit limit and its balance, proxies the firm’s funding liquidity level. Finally, the equity

component is a claim against the firm’s dividend payments. Given any capital structure,

the manager controls the firm’s liquidity and payout policies. More precisely, the manager

determines how and when to withdraw from (or repay to) the credit line, and how and

when to pay dividends.

Within this set of securities, disclosure affects the evolution of the credit line and. In

particular, it determines its interest rate. In our model, any balance on the credit line

account is charged an interest rate r̂i, for i ∈ H1, that is contingent on both performance

and disclosure. In contrast to models such as DeMarzo and Fishman (2007), investors

may sometimes charge a higher interest rate than r, or they can forgive part or all of the

current period interest charge.
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The intuition is that, as anecdotal evidence suggests, lenders are willing to cut some

slack to their borrowers when a temporary low performance is proven to be due to cir-

cumstances beyond their manager’s control. For instance, banks routinely renegotiate

their loans and prefer to delay payments than to force their borrowers into insolvency or

liquidation proceedings. One way to implement variable interest rates depending on the

disclosed evidence in practice may be through covenants on the firm’s short-term debt

(e.g., Smith and Warner (1979)).

The credit account balance reflects any repayment at the beginning of each period

before the firm cash flow realizes. The following result summarizes a security design that

implement the optimal contract.17

Proposition 9. Under the following security and compensation design, the manager

always discloses any evidence that might be available, and cash flows are used to either

repay coupon and credit balance or to issue dividends.

• The manager holds λ fraction of the firm equity;

• the long-term debt coupon is l;

• the credit line has limit z = v̄
λ

, and contingent interest rate r̂dl = 0 and r̂i 6=dl = r̂(π).

The firm only issues dividends after it pays off the credit balance and the coupon.

In the implementation, the credit balance or borrowed short-term debt, denoted as

m, summarizes the history and functions as the state variable. It maps one-to-one to the

state variable v of the firm’s problem (S). On the one hand, the manager can borrow

all the available credit and pay it out as dividend. Thus, the continuation value of the

manager in the firm must be at least λ(z − m). On the other hand, the investors will

not leave more information rent (in the form of liquidity) than necessary to the manager.

Hence the continuation utility of the manager must be

v = λ(z −m) (11)

which must hold at any history. Given this relation, as well as the policy dynamics in

Proposition 3, we can figure out how the firm’s short-term debt evolves, which further

implies the interest rates specified in Proposition 9.

To further illustrate the mechanisms, let us consider how the credit balance evolve

over time. Suppose that the firm starts certain period with credit balance m. It pays

17Evidently, as in all other security design problems, such design can never be unique.
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the long-term debt coupon l from the cash flow. The interest rate on the credit line is a

constant value r̂ unless bad cash flow news is disclosed when the interest rate becomes

zero. The credit balance in the following period denoted as mi∈H1 will be

mh = (1 + r̂)m+ (1 + r)(dh −∆) (12)

mnl = (1 + r̂)m (13)

mdl = m (14)

where dh = uh
λ

is the dividend payout. If a bad news is disclosed, then interest is forgiven

in the current period, and the new balance will stay the same. If the high cash flow

realizes, the firm is charged a interest rate of r̂ but will have (1 + r)∆ more cash to repay

the short-term debt in the next period (independently from disclosure). Therefore, the

new credit balance mh follows (12). If low cash flow realizes and no evidence disclosed,

then r̂ is charged toward the beginning balance m and the new balance mnl follows (13).

As shown in Proposition 9, one important feature of our model is that the equity

holdings, the long-term debt coupon, and the credit limit do not depend on the availability

of evidence: only the short-term interest rate does. The equity holdings determine how

the residual cash flow (or dividends) are split between the manager and investors. In our

model, when the firm starts paying out dividends, it has no possibility of being terminated

and surplus reaches the first best. In that stage, evidence is disclosure is payoff irrelevant.

The necessary way to incentivize the manager is for him to hold λ fraction of dividend

payments.

However, the interest rates of the credit line affect the evolution of the firm’s short-

term debt holding. Since evidence disclosure does affect firm liquidity in the short-run

transition, the interest rates must vary with the manager’s disclosure decisions. The

variation in interest rates is essentially to incentivize the manager to disclose bad news.

It is easy to see from Proposition 9 that the average interest rate is exactly r, but the

interest gap between disclosing bad news or not is r̂dl− r̂nl = r̂, and it increases with π. In

other words, as the probability of the manager possessing evidence increases, investors on

average still earn the risk free rate r, but they will design a larger interest rate variation

to induce disclosure of bad news.

10 Conclusions

We study the implications of embedding voluntary disclosure of evidence in an otherwise

standard dynamic agency model with non-verifiable cash flows. The model captures two
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key empirical regularities: (i) technological progress increasingly promotes the use of

evidence about performance; (ii) evidence is decentralized, namely, it is typically better

observed and understood by a firm’s management, than by its arm’s length stakeholders.

Evidence reduces the pay-for-performance sensitivity, because it enables the investors

to condition their short-term liquidity prevision on both the reported cash flows and the

evidence produced by the management. If the managers can convince the investors that

a temporary negative performance is due to bad luck, as opposed to bad behavior, the

investors can cut the firm some slack and accept a temporary relief on interest payments.

While this beneficial effect of evidence reduces the firm’s credit spread in secondary

markets, when no capital structure decisions are made, the result may reverse in primary

markets. Here, both the firm’s initial liquidity and its credit spread might be non-

monotonic functions of disclosure. Namely, better evidence might lower firm value at the

constrained optimal allocation, exacerbating the conflict between rent extraction by the

principal and efficiency. This occurs especially at low profitability firms, because better

evidence reduces the marginal value of providing initially financial slack to the firm, so

that investors trade-off higher termination odds with a lower managerial pay level.

Our numerical simulations suggest that while generating a relatively small increase in

stakeholder’s value, evidence can dramatically reduce efficiency, increasing the termina-

tion odds and the minimal time required to reach the termination boundary, as well as

inducing volatility spikes in continuation utilities for managers and in termination odds.

Importantly, the inefficiency induced by more frequent evidence disclosure that we derive

arises in a model where the principal has full commitment power; it does not depend on

the presence of time inconsistencies such as limited commitment.
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A Appendix

(1) The finite horizon model

It is useful to first prove Proposition 8. Proposition 1 will follow as a corollary.

Proof of Proposition 8. The T = 1 case taught us two facts: (i) whether P has

exercised or not the option, this has no effect on the last period implementable payoffs;

(ii) P could find it optimal to exercise the option at the beginning only if she terminates

in the first period, after a low state is reported and no evidence is disclosed. So, there

are only three policies to consider: TT (P does not exercise the option and terminates in

the first period when x = l), NT (P does not exercise the option and never terminates)

and OT (P exercises the option in the first period and terminates only when when x = l

and there is no disclosure). Wlog we can set all payments when the last cash flow is l to

zero.

Under the policy TT , there is one payment to determine: uhh, that is, the payment to

M aftery two successes. The payment satisfies two ICs: (i) at date 2, uhh ≥ δ+uhl = δ; (ii)

at date 1: puhh ≥ δ. It follows that uhh = δ/p; M’s utility at this policy is UM(TT ) = pδ;

P’s utility is UP (TT ) = (1 + p)(l + p∆)− pδ.
Under the policy NT , we need to determine two payments: ulh and uhh. While ulh

only satisfies ulh ≥ δ, uhh satisfies both uhh ≥ δ (at date 2) and puhh ≥ δ+ pδ (at date 1,

where we plugged the optimal ulh = δ). It follows that uhh ≥ δ(1 + p)/p; M’s utility at

this policy is UM(NT ) = 2pδ; P’s utility is UP (NT ) = 2(l + p∆)− 2pδ.

Under the policy OT , we need to determine three payments: udlh and uahh (for a ∈
{n, d}). However, from the disclosure IC we can see that unhh = udhh := uhh, and so the

problem reduces to solving for uhh and udlh. For similar reasons as before, udlh = δ. As for

uhh, it must be the same as in policy T , because the only feasible deviation from x = h is

to claim that x = l without disclosing evidence. So, uhh = δ/p; M’s utility is UM(OT ) =

pδ(1+(1−p)π̂); P’s utility is UP (OT ) = (2−(1−p)(1− π̂))(l+p∆)−pδ(1+(1−p)π̂)−c.
First, when comparing TT and NT we obtain a threshold p̂ such that:

p̂ :=
l(1−∆) + δ −

√
4l2∆ + (l(∆− 1)− δ)2

−2l∆

If p > p̂, P strictly prefers TT ; if p < p̂, P strictly prefers NT ; if p = p̂, P is indifferent

between the two policies (or any randomization of the two policies).

Second, either P exercises the option at p̂, or she never does. So, fixing p = p̂ and
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comparing UP (NT ) and UP (OT ) yields the threshold c̄:

c̄ :=
λπ

2l2∆

[
l2(1 + ∆2) + δ2 + l(1−∆)2δ − (δ + l(1−∆))

√
l2(1 + ∆)2 + 2l(1−∆)δ + δ2

]
Focusing on c < c̄, we need to consider two cases. If p > p̂, we need to compare UP (TT )

and UP (OT ). We find that UP (OT ) ≥ UP (TT ) if and only if p ≤ p̄, where:

p̄ :=
lπ(∆− 1)− πδ +

√
π(4∆(1− λ)(lπ − c) + π(l(1−∆) + δ)2))

2π∆(1− λ)

Finally, if p < p̂, we need to compare UP (NT ) and UP (OT ). We find that UP (OT ) ≥
UP (NT ) if and only if p ≥ p, where:

p :=
(1− π)(l(∆− 1)− δ) +

√
(l(1−∆ + δ)(1− π))2 + 4(c+ l(1− π))(l∆(1− π) + πδ)

2(l∆(1− π) + πδ))

Note that c enters p̄ under the square-root and has a negative sign, while it enters p only

under the square-root with a positive sign. It follows that ∂p̄/∂c < 0 and ∂p/∂c > 0.

Proof of Proposition 1. Now, let’s suppose that in the two-period model the firm is

exogenously endowed with the information technology. So, set c = 0. In this case, the

threshold π̄ is given by the value of π such that UP (OT |c = 0) = UP (NT ).

(2): The infinite horizon model

To proceed with the proofs for the infinite-horizon model, let us first show some basic

properties of the firm value function. Let C be the space of continuous and bounded

functions on the domain R+. Let F := {q ∈ C : 0 ≤ q ≤ s∗} be endowed with the ’sup’

metric where s∗ = (1+r)µ
r

is the first best surplus. It’s easy to see that F so defined is a

complete metric space. Define the Bellman operator T : F → F as:

Tq(v) = max
θ,π,ui,wi

(1− θ)µ (T )

+
1− θ
1 + r

{
π[pq(wdh) + (1− p)q(wdl)] + (1− π)[pq(wnh) + (1− p)q(wnl)]

}
s.t. (PK), (ICg), (ICb), (ICn), (LL)

It’s standard to show that the Bellman operator T : F → F is well defined and the

constraint set is convex. Moreover, we can show the Bellman operator has the following
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property.

Lemma A.1. Let F1 = {q ∈ F : q(v) = s∗ for all v ≥ (1+r)pδ
r
}. If q ∈ F1, then Tq ∈ F1.

Proof. Take any q ∈ F1 and v ≥ (1+r)pδ
r

. Consider the following policy:

θ = udl = unl = 0, udh = unh =
v

p
− δ

r
, wi =

(1 + r)pδ

r
∀i ∈ H1

It’s easy to check that this policy satisfies all the constraints of (T ). In addition, under

this feasible policy we know

Tq(v) ≥ µ+
s∗

1 + r
= s∗

Hence, we must have Tq(v) = s∗.

Proposition A.1. The fixed point of T , which is unique and called s(·), is increasing,

concave, and satisfies s(v) = s∗ for any v ≥ (1+r)pδ
r

.

Proof. It is easy to see that T is monotone (whereby q1 ≤ q2 implies Tq1 ≤ Tq2) and

satisfies discounting (wherein T (q+a) = Tq+ δa). Then the Blackwell’s theorem implies

T is a contraction mapping on F and hence has a unique fixed point in F . Let F2 =

{q ∈ F : q(v) is increasing and concave for all v ∈ R+}. It’s standard to show that T

maps from F2 to F2. Combining Lemma A.1, we must have that the unique fixed point

of T lies in F1 ∩ F2.

Proof of Proposition 2. Given the fact that s(v) reaches first best for a large enough

v, we can define v1 = inf{v : s(v) = s∗} and v2 = inf{v : f(v) = s∗}.
First, consider the program (S), and let {θ, ui, wi}i∈H1 be the optimal policy at v̄.

Note that, to achieve first best, all continuation values wi∈H1 must be no less than v1,

and the liquidation probability θ is zero. In addition, from the constraints (ICg),(ICb),

(ICn), and (LL), we must have

(1 + r)udl + wdl ≥ (1 + r)unl + wnl ≥ v1 (A.15)

(1 + r)udh + wdh ≥ (1 + r)unh + wnh ≥ (1 + r)δ + v1 (A.16)

Then (PK) implies v1 ≥ pδ+ v1
1+r

, or v1 ≥ (1+r)pδ
r

. Moreover, the conclusion of Proposition

A.1 implies that v1 ≤ (1+r)pδ
r

. Hence, we must have v1 = (1+r)pδ
r

.

Now condiser the program (F ). Let {θ, ui, wi}i∈H1 be the optimal policy at v̄. To

achieve first best, the investment option must never be exercised, and moreover, the
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policy has to satisfy that θ = 0 and wnh, wnl ≥ v2. So similarly, we can show that

v2 ≥ (1+r)pδ
r

. In addition, since f(v) ≥ s(v; 0), Proposition A.1 implies that f(v) = s∗ for

v ≥ (1+r)pδ
r

, which means v2 ≤ (1+r)pδ
r

. Therefore, we must have v2 = (1+r)pδ
r

.

To characterize the policies, we specify the first order conditions and the envelope

condition of program (S) as follows. Denote η as the Lagrangian multiplier of (PK).

Moreover, let αg, αb, αn be the multipliers of (ICg), (ICb), and (ICn), respectively. Then

the first order conditions are:

(1− θ)πps′(wdh) = (1− θ)πpη − αg (FOCdh)

(1− θ)π(1− p)s′(wdl) = (1− θ)π(1− p)η − αb (FOCdl)

(1− θ)(1− π)ps′(wnh) = (1− θ)(1− π)pη + αg − αn (FOCnh)

(1− θ)(1− π)(1− p)s′(wnl) = (1− θ)(1− π)(1− p)η + αb + αn (FOCnl)

The envelope condition is:

s′(v) = η (EN)

Proof of Lemma 1. Take any v < v̄, and let {θ, wi∈H1} be the optimal policy of the

program (S) with π = π̂.

First, we show that the Lagrangian multiplier αb = 0. Suppose not. Then by the first

oder conditions (FOCdl) and (FOCnl), we must have s′(wdl) < s′(wnl), which further

implies that wdl > wnl by the concavity of s(·). In other words, the constraint (ICb) holds

as strict inequality. The complementary slackness then implies αb = 0, a contradiction.

Second, we show that it cannot be the case that αg = αn = 0. Suppose this is true.

Then all the incentive constraints are not binding. Therefore, the firm value s(v) should

be the same as if we solve the problem (S) with only the promise keeping constraint

(PK), and then wi = (1 + r)v for i ∈ H1 becomes feasible. Accordingly, the objective of

(S) implies that s(v) ≥ s∗. This forms a contradiction with v < v̄.

Third, we show that the Lagrangian multiplier αn > 0. Suppose not. Then from the

above result, it has to be that αg > 0 = αn. Then the first oder conditions (FOCnh)

and (FOCnl) together imply that s′(wnh) > s′(wnl). Hence, wnh < wnl by concavity,

contradicting with (ICn).

Fourth, we show that the Lagrangian multiplier αg > 0. Suppose not. Then by

(FOCdh) and (FOCnh), we know s′(wdh) > s′(wnh) which further implies that wdh < wnh.

This forms a contradiction with (ICg).

Last, using the facts of αn > 0 = αb, we can conclude from (FOCdl), (FOCnl), and

(EN) that s′(wdl) = s′(v) < s′(wnl). Hence, concavity implies wdl > wnl.
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Proof of Proposition 3. The proof is divided into two parts. Part (a) shows that

the proposed policy in the Proposition is optimal for problem (S). Part (b) derives the

n-period liquidation thresholds.

Part (a). First, consider the case of v ≥ v1.

Let θ = 0, wnl = v − r̂(v̄ − v), wdl = v, wh = wnl + (1 + r)δ, and ui = 0 for i ∈ H1.

We can verify that they satisfy all the constraints of (S). Define an auhxiliar function as

follows:

g(v) = µ+
1

1 + r

{
ps(wh) + (1− p)[πs(v) + (1− π)s(wnl)]

}
(A.17)

We now show that if g(v) = s(v) at some v ∈ [v1, v̄], then we must have g′(v) = s′(v).

Using the definition above, we can derive

(1 + r)g′(v) = (1 + r̂)[ps′(wh) + (1− p)(1− π)s′(wnl)] + (1− p)πs′(v) (A.18)

Given that g(v) = s(v), we know the specified policy is optimal at such v. So the policy

must satisfy the first order conditions of (S). Summing (FOCdh) (FOCdh) (FOCnl), and

using the envelope condition (EN), we can obtain

ps′(wh) + (1− p)(1− π)s′(wnl) = [1− (1− p)π]s′(v) (A.19)

Then plug (A.19) into (A.18) and rearrange to arrive at g′(v) = s′(v).

Obviously, g(v) ≤ s(v). We can also verify that and g(v̄) = s(v̄). Suppose there

is some v̂ ∈ (v1, v̄) such that g(v̂) < s(v̂). Then there must exist some ṽ such that

g(ṽ) = s(ṽ) and g′(ṽ) > s′(ṽ), a contradiction. Hence, g(v) = s(v) and the specified

policy is optimal.

Let ŵi = min{wi, v̄}, and ûi = (1 + r)(wi − ŵi), for i ∈ H1. Appenrently, this policy

satisfies the constraints of (S). Since s(v) = s∗ when v ≥ v̄, we know the modified policy

is optimal.

Second, consider the case of v < v1. Let v := inf{v : θ(v) = 0}. From (PK) and

(ICn), we know v > 0. Now suppose v < v1. The constriants of (S) implies that

wdl(v+ ε) < v for sufficiently small ε > 0. Then we have s′[wdl(v+ ε)] > s′(v+ ε), which

is contradicted with (FOCdl) at v + ε. Hence, we must have v = v1. Then (PK) implies

θ(v) = min{v,v1}
v1

.

Part (b). Notice that at the n-period thresholds the following must hold: wnl(v
1) = 0,

and wnl(v
j) = vj−1 for j ≥ 2. According to the optimal policy of wnl, the latter implies

vj−1 = wnl(v
j) = vj − r̂(v̄ − vj)
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Hence, vj = 1
1+r̂

[vj−1 + r̂v̄]. Moreover, by the optimal wh(v
1), wdl(v

1), and (PK), we

have

(1 + r)v1 = p(1 + r)δ + (1− p)πv1 = rv̄ + (1− p)πv1

which implies v1 = r̂
1+r̂

v̄. Finally, we can obtain the n-period liquidation threshold

expressions simply by induction.

Proof of Proposition 4. Consider π = 0, π̂ as a parameter of the firm’s problem (S).

Part (a). Take any continuation value v ∈ [v1, v̄). Let wdl, wnl be the optimal policies

at v. Denote sπ(v) as the derivative of the firm value s with respect to π at the given v.

Then in (S), the envelope condition with respect to π is obtained as

(1 + r)sπ(v)

1− p
= s(wdl)− s(wnl)− s′(wdl)(wdl − wnl) (A.20)

Since s(·) is concave, wnl < wdl, and s′(wdl) < s′(wnl) (see the last part of the Lemma

1 proof), we must have sπ(v) > 0. In addition, since s(·) is linear in v for v < v1, the

continuity of s(·) implies that sπ(v) > 0 for v < v1.

Part(b). Take any v ∈ [v1, v̄]. According to the definition in (6), the pay-performance

sensitivity can be calculated as

PPS =
wh + (1 + r)uh − [πwdl + (1− π)wnl]

(1 + r)∆

=
πwnl + (1 + r)δ − πwdl

(1 + r)∆

=
π[v − r̂(v̄ − v)] + (1 + r)δ − πv

(1 + r)∆

= λ− πr̂(v̄ − v)

(1 + r)∆

The second line is from the equality of (ICn), while the third line is from plugging in the

policy expressions of wdl, wnl. Obviously, PPS is decreasing in π and increasing in v.

Now consider any v < v1. Since our PPS measure is only defined when the firm is not

liquidated at the beginning of the period, we can simply get

PPS = PPS(v1) = λ− πr̂(v̄ − v1)

(1 + r)∆
=

λ(1 + r − π)

1− (1− p)π + r

Obviously, in this case, PPS decreases in π.

Parts (c) and (d). These are easy to obtain from the result of Proposition 3.
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Proof of Proposition 5. For v ∈ (0, v̄), since π̂ > 0 and Proposition 4 shows that s(v)

strictly increases in π, we must have s(v; π̂) > s(v; 0). Then the continuity of s(·) implies

c̄ in (9) is well defined, and c̄ > 0. Moreover, the threshold cost c̄ increases in π̂ because

s(v; π̂) does.

When π̂ increases, note that the increase of s(v; π̂) is lager than that of f(v). This is

becasue by the problem (F ) the increase of f(v) is due to future increase in firm value

when the option is exercised. Hence, vh becomes larger and vl beomes smaller.

When c increases, similar argument implies that the decrease of s(v; π̂) is lager than

that of f(v). Hence, vh becomes smaller and vl beomes larger.

Proof of Proposition 6. If c = 0, then the option is exercised right away because

s(v; π̂) ≥ s(v; 0) for any v. In this case, vl = 0 and vh = v̄.

Now consider any 0 < c < c̄. First, not that in the region close to the boundary v̄,

not exercising the option is optimal. This is because f(v̄) = s∗ > s(v̄; π̂)− c. Then vh as

in (10) is well defined, and the option is not exercised for v ∈ [vh, v̄].

Second, not exercising the option is optimal in the region close to the boundary 0.

This is becasue f(0) = 0 > s(0; π̂)− c. Hence, vl as in (10) is well defined, and the option

is not exercised for v ∈ [0, vl].

Third, suppose the option is also delayed for v ∈ (vl, vh). Then the option is never

exercised, and f(v) = s(v; 0) for all v ∈ [0, v̄]. However, since c < c̄, there are some v

such that s(v; π̂)− c > s(v; 0) = f(v), implying exercise the option is optimal at such v.

This is contradiction.

In the case of c > c̄, we have s(v; π̂) − c < s(v; 0) for any v, by the definition of c̄ in

(9). Then s(v; π̂)− c < f(v) for any v, implying the option is never exercised.

Lemma A.2. When the investment option is not exercised as in (F ), the relevant optimal

continuation utility wnh and wnl are the ones in Proposition 3 by setting π = 0.

Proof. Take any v < v̄. We first show that the (ICn) constraint in problem (F ) must

hold as equality at v. Suppose not. Then f(v) should be the same as if we solve (F )

without (ICn). Then since wnh = wnl = (1 + r)v and θ = 0 is feasible, we know from the

objective of (F ) that f(v) ≥ s∗, a contradiction with v < v̄.

Then the optimal wnh(v) and wnl(v) are jointly determined by (PK) and the equality

of (ICn), resulting in the same expressions as in Proposition 3 with π = 0.

Lemma A.3. In the case of p ≤ r, we have s(v) = ai + biv for any v ∈ [vi, vi+1], where

i = 0, 1, 2..., and the coefficients satisfy

a0 = 0, bi =
µ(r + p)(1 + r̂)

rpδ
[r̂(1− p)(1− π)/r]i (A.21)
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Proof. According to the policy characterization in Proposition 3, when p ≤ r we have

wh(v) ≥ v̄ for any v > 0. In other words, the firm will immediately reach the payout

boundary v̄ after any high cash-flow shock, conditional on the firm is not liquidated in

the beginning of the period. From this observation, we can derive s(·) by induction.

When v ∈ (0, v1], the objective of (S) implies

s(v) =
v

v1

{
µ+

1

1 + r
[ps∗ + (1− p)πs(v)]

}

from which we get s(v1) = (1+r)(r+p)µ
r[1+r−(1−p)π]

. Hence, b0 = s(v1)
v1

= µ(r+p)(1+r̂)
rpδ

.

When v ∈ [vi, vi+1] for i ≥ 1, we have wnl(v) = (1 + r̂)v − r̂v̄. Then the objective of

(S) implies

[1 + r − (1− p)π]s(v) = (1 + r)µ+ ps∗ + (1− p)(1− π)s[wnl(v)]

and therefore

ai + biv =
(1 + r)µ+ ps∗

1 + r − (1− p)π
+

(1− p)(1− π)

1 + r − (1− p)π
{ai−1 + bi−1[(1 + r̂)v − r̂v̄]}

Equating the coefficients, we get bi = r̂
r
(1− p)(1− π)bi−1. The result is then obtained by

induction.

Note that the slope bi in (A.21) is a function of p and π. In the following, we denote

this slope as bi(π; p), and denote the derivative of this slope with respect to π as b′i(π; p).

Lemma A.4. Given the discount rate r and any i ≥ 1, we have b′i(0; p) < 0 if and only

if p > r
r+i(1+r)

.

Proof. From the expression of bi(π; p) in (A.21), we get

b′i(0; p) =
µ(r + p)

rpδ
(1− p)i[(1− p)r − i(1 + r)p]

It’s easy to see that b′i(0; p) < 0 if and only if p > r
r+i(1+r)

.

To facilitate the following proof, we define h(r) = (1 + p
r
)(1 + r) and functions gi(p)

where i = 1, 2 to be

g1(p) =:
2(1− p)2(1− p)

λ

(
1 +

l

p∆

)
(A.22)

g2(p) =: (6
√
pp+ 4p+ 3)p (A.23)
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and the unique pi to be the value that satisfies gi(pi) = 1. We then define a threshold

profitability value p =: min{p1, p2,
1
9
}.

Lemma A.5. For any p ≤ p, we have

(a) µ(1−p)2
pδ

h(p) ≥ 1;

(b) 2(1− p)2 ≥ 3(1+
√
p)2

3
√
p+2

≥ (1 +
√
p)2.

Proof. By the definition in (A.22), we know that g1(·) is strictly decreasing and that

g1(p) = µ(1−p)2
pδ

h(p). Hence, statement (a) holds. To see result (b), note that for any

p ≤ p we have

g2(p)− 1 = 3(1 +
√
p)2 − 2(1− p2)(3

√
p+ 2) ≤ 0

Rearrange to get 2(1 − p)2 ≥ 3(1+
√
p)2

3
√
p+2

. Moreover, since p ≤ 1/9, we have 3
3
√
p+2
≥ 1,

which implies the second inequality in statement (ii) holds.

Lemma A.6. For any p ≤ p, there exist j ≥ 2 and r̃ ∈ [p,
√
p) such that

(a) µ(1−p)j
pδ

h(r̃) = 1;

(b) p > r̃
r̃+j(1+r̃)

.

Proof. Take any p ≤ p. First, by (a) of Lemma A.5, there must exsit some j ≥ 2 such

that

µ(1− p)j

pδ
h(p) ≥ 1 >

µ(1− p)j+1

pδ
h(p) (A.24)

Because (1− p)h(p) ≥ h(
√
p) by (b) of Lemma A.5, we also have

µ(1− p)j

pδ
h(
√
p) ≤ µ(1− p)j+1

pδ
h(p) < 1 (A.25)

Then (A.24) (A.25) together imply there exists r̃ ∈ [p,
√
p) such that µ(1−p)j

pδ
h(r̃) = 1.

Second, from the above derivation, we know that µ(1−p)j
pδ

h(r̃) > µ(1−p)j+1

pδ
h(p). Hence,

we have h(r̃) > (1 − p)h(p), which further implies that p
r̃
> 2(1−p2)

1+r̃
− 1. Moerover,

because r̃ <
√
p, Lamma A.5 (b) implies that 2(1− p2) > 3(1+r̃)2

3r̃+2
, which is equivalent to

2(1−p2)
1+r̃

− 1 > 1
3r̃+2

. Hence, we know that p
r̃
> 1

3r̃+2
, or p > r̃

r̃+2(1+r̃)
. Then we can obtain

part (b) by j ≥ 2.
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Proof of Proposition 7. Note that if c = 0, the firm exercises the option at initia-

tionm, and optimally chooses

v̂0 = arg max
v
{s(v; π̂)− v}

On the contrary, if c = c̄ the firm never exercises its investment option, and at

initiation, it optimally chooses

ṽ0 = arg max
v
{s(v; 0)− v}

Take any p ≤ p. Consider the values j and r̃ in Lemma A.6, and let r = r̃. Then we

have s′(ṽ0; 0) = bj(0; p) = 1, and ṽ0 = vj+1(0). Moreover, given the result of Lemma A.4,

we know that if π̂ is sufficiently small, then bj(π̂; p) < 1 = bj(0; p), because b′j(0; p) < 0

by part (b) of Lemma A.6. This further implies that v̂0 ≤ vj(π̂) < vj+1(0) = ṽ0. And

because s(v; π) is continuous in both v and π. A small change in π and a downward jump

of initial continuatin utility from ṽ0 to v̂0 implies s(v̂0; π̂) < s(ṽ0; 0). So the firm value

and the manager payoff at initiation must both have a increasing part as the investment

cost increases from 0 to c̄.

Now conside the case where p is close to zero. Lemma A.4 implies s′(ṽ0; 0) < s′(ṽ0; π̂)

for a sufficiently small π̂. Hence, v̂0 > ṽ0, which further implies s(v̂0; π̂) > s(ṽ0; 0), since

s(·; π) is increasing in π. Therefore, the firm value and the manager’s rent at initiation

must both have a decreasing part in the investment cost c.

Proof of Proposition 9. We will show that the arrangement implements the payout

and the evolution of the optimal contract.

First, consider the case of m = 0, or the cash payout region. The agent’s total payoff

is λ fraction of the firm payout which is λdh = uh. And according to (12) (13) (14), the

subsequent credit line balance will all be zero, or mh = mnl = mdl = 0, which implis

that the continuation utilities in th the contract are wh = wnl = wdl = v̄ by (11). So in

the implementation, the agent gets the same cash as in the contract, and the firm always

stays at first best, having no probability of defaulting.

Second, consider the case of m > 0. Given this credit balance, we can use (11) to (14)

to derive the credit line balance of the subsequent period as:

mnl =
[1 + r̂(π)](v̄ − v)

λ
, mdl =

v̄ − v
λ

, mh = mnl − (1 + r)∆ (A.26)
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So by (11), the agent’s ttotal payoff (by withdrawing all available credit) becomes

wnl = v − r̂(π)(v̄ − v), wdl = v, wh + (1 + r)uh = wnl + (1 + r)δ (A.27)

which is the same as in Proposition 3. Note this derivation includes the two senarios of

whether the investment option is exercised or not. In the latter case, we only have the

relevant credit balance to be mnl or mh, and correspondingly, the agent’s payoff to be

wnl or wh + (1 + r)uh. These values are obtained by setting π = 0 in (A.26) and (A.27).

Hence, by Lemma A.2 we know these payoffs are the same as in the optimal contract

with the investment option.
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