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Abstract

We study information design in a regime change context. A continuum of
agents simultaneously choose whether to attack the current regime and will suc-
ceed if and only if the mass of attackers outweighs the regime’s strength. A de-
signer manipulates information about the regime’s strength to maintain the status
quo. The optimal information structure exhibits local obfuscation, some agents
receive a signal matching the true strength of the status quo, and others receive an
elevated signal professing slightly higher strength. Public signals are strictly sub-
optimal, and in some cases where public signals become futile, local obfuscation
guarantees the status quo’s survival.
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“The conscious and intelligent manipulation of the organized habits and opin-
ions of the masses is an important element in democratic society. Those who manip-
ulate this unseen mechanism of society constitute an invisible government which
is the true ruling power of our country.”

— Edward Bernays

1 Introduction

The revolution of information and communication technology raises growing con-
cerns about digital authoritarianism.1 Governments worldwide are increasingly using
advanced technology to consolidate their control over information and suppress dis-
sent.2 Despite their tremendous effort to uphold the notion of “cyber sovereignty,” to
establish information censorship, and to spread disinformation, full manipulation of
information in the modern age remains outside the grasp of autocrats. To optimistic
liberals, it keeps the hope alive. This paper begins the formal investigation of whether
this hope is justified. We study information design in a canonical regime-change game
à la Morris and Shin (2003) and derive the optimal information structure to stabilize
the regime. The result paints a bleak picture: the most effective policy to maintain the
status quo requires only creating a minor obfuscation for a fraction of agents.

In our model, an information designer faces a unit mass of agents who simultane-
ously decide whether to coordinate on an attack. Attacking is costly, and each attacker
will be rewarded if and only if the status quo is overthrown. The strength of the status
quo, namely the state, is randomly selected from an interval by nature and unknown
to the agents. The status quo survives if and only if the total measure of attackers does
not exceed its state. When the state is above one, it is invincible because the status quo
survives under the attack of all agents. The information designer commits to a state-
dependent information policy that sends a signal, which can be public or private, to
each agent, and his objective is to maximize the regime’s probability of survival in its
least-preferred equilibrium among agents.

It is helpful to first examine a few benchmark cases. First, if the information de-
signer always reveals the state publicly, the agents will attack, and the regime, in turn,
survives, if and only if the state is invincible. Contrarily, if the information designer
reveals no information, the agents either always or never coordinate on attacking, de-
pending on their prior, and the regime survives under attacks if and only if its state
is invincible. Finally, if the information designer is constrained to using public infor-
mation policies, an explicitly solvable state cutoff exists where at optimum the infor-

1See Yuval Noah Harari, “Why Technology Favors Tyranny," The Atlantic, October 322(3), 2018.
2See Frenkel, Sheera, Kate Conger, and Kevin Roose. “Russia’s playbook for social media disinfor-

mation has gone global.” The New York Times 31 (2019).

1



mation designer sends one distinct signal for states above this cutoff and another for
those below. The agents attack upon seeing the second signal.

The main contribution of this paper is an explicit and straightforward character-
ization of the optimal information structure. Its simplest implementation features a
countable set of messages — regardless of the state set’s countability — and private
i.i.d. signal. At optimum, the information designer partitions the state set by a strength
threshold. For weak states below the threshold, a determinate self-identifying signal
is sent, which will coordinate all agents on attacking. Among the strong states above
the threshold, the information designer further classifies them into tiers by strength.
The first tier, i.e. the set of the strongest ones, sends signal s1 to all agents; the sec-
ond tier sends s1 to a proportion of agents, and sends another signal s2 to others; the
third tier sends s2 to a proportion of agents, and sends another signal s3 to others; and
so on. In other words, except the first tier and the weak states which will always be
overthrown, the information designer under each state executes a “truth-lie” policy,
essentially revealing its tier to some agents but deceiving other agents by a slightly
stronger tier. In this way, the information structure generates local obfuscation among
agents.

The optimal information structure collapses global coordination among agents by
creating a hierarchy of private beliefs. Under the optimal information policy, an agent
seeing a tier-1 signal will refrain from attacking since the probability of facing an in-
vincible status quo is sufficiently high; realizing this, she will not attack upon a tier-2
signal either, because a fraction of her fellow agents are likely to receive a tier-1 signal
and be deterred, resulting in an insufficient mass of attackers in expectation. The use
of a tier-1 signal, therefore, generates a ripple effect to squelch agents’ attack on lower-
tier signals. The iteration then unravels to the limit case that no single agent seeing
a signal sent by any tier will choose to attack, and thus all states beyond the above
threshold survive. It is worth noting that, although each state in the optimal design
needs only two signals, the maximized survival probability is not achievable with a
(public or private) disclosure policy of binary recommendations, because the iteration
process among agents can only result from endogenously heterogeneous posterior be-
liefs and higher-order uncertainty.

Local obfuscation has a unique advantage over public information structures that
send each agent the same signal conditional on the state. We demonstrate this advan-
tage in two distinct ways. On the one hand, when the measure of invincible states
converges to zero, the optimal public information structure becomes futile, while op-
timal local obfuscation still manages to save a significant measure of states below one.
A sharp implication of this result is that when the attacking cost is sufficiently high
but the measure of invincible states becomes almost negligible, virtually no state sur-
vives under public information disclosure, but all states survive under optimal local
obfuscation. In the latter case, the information designer is even relieved of the usual
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commitment concern because the survival of the status quo is guaranteed after all.3 On
the other hand, given a target set of surviving states, optimal local obfuscation allows
for a lower threshold of attacking cost to achieve the target than optimal public disclo-
sure, and the difference between the cost thresholds coincides with the conditionally
expected strength of the surviving states below one.

The optimal design with local obfuscation can be easily implemented by a pri-
vate i.i.d. signal. A natural and practical interpretation of this is that the informa-
tion designer, being, for instance, the propaganda department of an autocratic regime,
spreads messages with close but distinct implications across various social media. The
designer does not need to control over the identity of receivers of each message, but
it manages to randomly sow confusion and doubt, resulting in local obfuscation by
dividing message recipients by media coverage.4

Besides straightforward implementation, optimal local obfuscation is robust in sev-
eral ways. First, the identification of the threshold of surviving states, and thus the
maximum survival probability of the status quo, results from the converging iterated
process and does not require any prior knowledge of the optimum. Besides, when the
information designer has only limited available signal values at her disposal, a natu-
ral truncation of our information structure that encompasses the highest tiers proves
to be the unique optimum. Finally, this information structure remains optimal when
arbitrary correlation across signals is allowed.

Related literature. Our paper belongs to the growing literature on Bayesian persua-
sion and information design initiated by Kamenica and Gentzkow (2011), and Berge-
mann and Morris (2016). The backbone of our framework is a game of regime change
à la Morris and Shin (2003),5 and the key novelty of our modeling approach is to fully
incorporate agents’ signals in the information design. On the front of information de-
sign in a global game context, the models closest to ours are Goldstein and Huang
(2016, 2018), and Inostroza and Pavan (2018). They show if the design were to restrict
attention to public information policies, the optimal one would be a simple monotone
pass/fail test. Basak and Zhou (2018, 2019) consider such persuasion under dynamic
settings. In most of these models, the agents’ private signal assumes an exogenous
noise, and another simple public signal is added in as the medium of persuasion; while
in our model we directly look for the optimal design of the distribution of the private

3In general, the commitment assumption is justified by long-term interaction (Best and Quigley 2017;
Mathevet et al. 2018) and restrictions for designers to fabricate the outcome of the information structure.
(Guo and Shmaya 2019; Lipnowski et al. 2018).

4It is an open secret that these strategies are widely employed in many authoritarian regimes. For
example, King et al. (2017) empirically study online comments by the notorious “50-cent gang” who
post fabricated social media comments as if they were the genuine opinions of ordinary citizens. Also,
Ong and Cabanes (2018) report interviews of architects of disinformation, the high-level strategists and
digital support workers, behind fake news and “digital black operation” in Philippines.

5Also see Carlsson and van Damme (1993), Morris and Shin (1998), Jeitschko and Taylor (2001),
Chassang and Miquel (2010), Shadmehr and Bernhardt (2011), Huang (2017), Cong et al. (2019), and
Dai and Yang (2018) for other applications of coordination games.
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signal. One exception is Inostroza and Pavan (2018), who allow the designer to com-
municate with agents privately, but private signals are constrained to be Gaussian in
an extension.

Our paper assumes that the designer anticipates the adversarial (or worst) equilib-
rium to him being played for each information structure. This adversarial equilibrium
selection is typical to study information design in coordination games. However, be-
cause the standard revelation principle argument does not apply, solving the optimal
information structure with adversarial equilibrium selection is difficult and often relies
on the structure of the base game. Recently, two methodological breakthroughs have
been made. Mathevet et al. (2019) propose a belief-based method to analyze infor-
mation design in finite games, which allows for flexible equilibrium selection. Morris
et al. (2019) use the Bayes-correlated equilibrium approach to study adversarial in-
formation design in finite super-modular games where players choose between two
actions. They provide a general and complete characterization of adversarial equilib-
rium implementable outcomes and sufficient conditions for the “perfect coordination
property”– all players all choose the same action at the optimal information structure.
We differ from these two papers by studying a base game with continuum states and
agents, and our focus is to characterize an intuitive optimal information structure and
highlight local obfuscation. It is worth mentioning that our optimal information de-
sign leads to strategic uncertainty and overlapping information sets among agents.
This is similar to the exogenous information structure in the email game of Rubinstein
(1989) and the follow-up literature on higher-order beliefs such as Carlsson and van
Damme (1993), Morris et al. (1995) and Kajii and Morris (1997). Our paper comple-
ments this literature by endogenizing such information structures. See Bergemann
and Morris (2019) and Morris et al. (2019) for more discussion on the connection be-
tween adversarial information design and the literature on higher-order beliefs.

Information design with multiple audiences has been studied in other settings, and
the advantage of using private signals has been pointed out. Alonso and Câmara
(2016), Bardhi and Guo (2018), Chan et al. (2019) analyze information design in vot-
ing models. Hoshino (2019) shows that, for any non-degenerate prior, agents can be
persuaded to take an action profile which satisfies a generalization of risk dominance.
Galperti and Perego (2018) formulate the multi-agent information design problem as
a linear program, examine its dual representation, and provide a general characteri-
zation. Galperti and Perego (2019) investigate an information design problem where
receivers share information with each other on a network of social links. Ely (2017)
studies information design in a dynamic two-agent coordination game. In this liter-
ature, the outstanding performance of discriminatory information structure typically
requires the designer to manage the statistical correlation between target signals of
agents. On the contrary, the optimal information structure in the current paper is com-
pletely anonymous.
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This paper also contributes to the literature on information manipulation in revolu-
tions and political regime shifts. Our framework is closely related to the coordination
game of regime change by Angeletos et al. (2006) and Edmond (2013).6 These two
papers also consider an informed government that endogenizes information towards
a large number of imperfectly informed agents, but specifies different strategies for
the government’s information manipulation and provide distinct insights on the mul-
tiplicity of equilibria. Our main contrast to them is that while their models feature
costly signaling without commitment, ours focuses on persuasion as the information
designer can commit to the information release policy.

Also related to this paper is the literature on rumors in economics and other fields
of social sciences. When an information designer sends mixed signals, the informa-
tional effect is comparable to spreading rumors, for example in Chen et al. (2016).
Unlike their model, which emphasizes how agents communicate about rumors, and
other approaches such as Banerjee (1993), which models rumors as a dynamic trans-
mission process, we focus on the information designer’s choice of whether to keep
information obfuscated, and show that the information designer sometimes benefits
from deliberate truthfulness.

More broadly, our paper is related to the literature about endogenous polarization.
Glaeser (2005) provides a theory where politicians create hatred by spreading false
stories about other groups’ crimes to gain political support. Alder and Wang (2019)
argue that political elites have the incentive to create mistrust among different social
groups to “divide and rule.” Jeong (2019) points out that a group of agents with private
information about multi-dimensional states can be polarized by a public message.

Organization. The rest of the paper is organized as follows. Section 2 lays out the
model. Section 3 presents the main result, which explicitly characterizes the optimal
information structure, and compares optimal local obfuscation with optimal public
propaganda. Section 4 examines the robustness of our proposed information structure.
Section 5 concludes. Proofs, unless otherwise specified, are in the Appendices.

2 Model

Base game. The society is populated by a unit mass of agents, indexed by i ∈ [0, 1].
There are two possible regimes, the status quo, and an alternative. Agent i decides to
attack the current regime (ai = 1) or not (ai = 0). The aggregate mass of population
that attacks is denoted by A such that

A =
∫ 1

0
aidi.

6Also see Shadmehr and Bernhardt (2015), and Edmond and Lu (2017) on information manipulation
in other political economy settings.
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The strength of the status quo is represented by a random variable θ. The status quo
survives if and only if θ ≥ A. The state is drawn from a commonly known probability
distribution on Θ = [θ, θ̄] ⊆ R. The cumulative probability function (CDF) of the
distribution F(·) is differentiable for every θ, and let f (θ) denote its density function.

If the agent does not attack, her payoff is zero. If the agent attacks, her payoff de-
pends on her action and the regime status: she incurs positive cost c ∈ (0, 1) regardless
of the regime status, and if the regime is overthrown, she receives a benefit, which is
normalized to be 1.7 An agent’s utility function is therefore

u(ai, A, θ) = ai(1{θ < A} − c)

where 1{·} is the indicator function. We assume that

θ̄ > 1 > θ ≥ 0.

In other words, there are states (θ > 1) in which the corresponding base game is domi-
nance solvable with no attack. We assume θ ≥ 0 to rule out the uninteresting case, but
this assumption is not essential.8

Information structure. An information designer commits to disclosing information to
the agents about the state θ. This is modeled as an information structure consisting of a
signal space S and a state-dependent distribution over the signal profile S[0,1]. For our
purpose, it is sufficient to specify the resulting state-dependent distribution π : Θ →
∆(S) where π(s|θ) corresponds to the measure of agents receiving signal s ∈ S. Hence,
the received signal s also corresponds to the agent’s type. We assume the information
structure is anonymous, i.e., agent i receives signal s in state θ with probability π(s|θ)
for any i, s, and θ. Put differently, the designer is allowed to send differential signals
to agents, but he is unable to discriminate agents based on their identities.9 Without
loss of generality, we further focus on the class of distributions where the density is
almost everywhere well-defined and integrable, and thereby restrict our attention to
policies under which the regime outcome is measurable in the information designer’s
information. In the rest of the paper, we use information structure and its resulting
distribution of agents’ types (S, π) interchangeably unless otherwise noted.

Bayesian game and solution concept. The combination of information structure and

7The benefit can be interpreted as ideology or pecuniary benefits that help to overcome the classic
free-rider problem (Olson 1965). For example, agents may view their participation in an attack as ben-
eficial for the society and therefore it directly adds to their utility. See chapter 2.3 of Acemoglu and
Robinson (2005) for a comprehensive discussion.

8Alternatively, one can allow θ to be negative, and when θ < 0, the regime changes as long as one
agent attacks. None of our analysis is affected.

9Our configuration of π, which determines with certainty the measure of agents receiving each sig-
nal, provides a tractable framework for the exposition of economics in our main results. Meanwhile,
our analysis readily extends to the general and more complex cases without determinate measures or
agent anonymity. We delegate the generalization to Section 4.
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base game constitutes a Bayesian game, which proceeds as follows. First, θ is drawn
by nature. Then, given an information structure indexed by (S, π), each agent i re-
ceives signal s ∈ S according to π, and all agents simultaneously choose their actions.
Agent i’s strategy ai : S → [0, 1] specifies the probability of attack. In a Bayesian Nash
equilibrium, given a−i and her own signal s, agent i attacks if and only if she strictly
prefers to attack.

For a given information structure, there may be multiplicity due to the coordination
nature of the base game. We solve for the information designer’s worst Bayesian Nash
equilibrium to capture the idea of adversarial/robust information design. That is, for
each information structure, agents coordinate on a strategy profile such that the largest
measure of agents attacks. In the remainder of the article, we refer to the information
designer’s worst Bayesian Nash equilibrium as equilibrium.

The information designer’s problem is to choose (S, π) to induce an adversarial
Bayesian Nash equilibrium which maximizes the regime’s expected probability of sur-
vival.

3 Analysis

We begin with the equilibrium characterization for an arbitrary information structure.

Proposition 1. For every (S, π), the induced Bayesian game has a unique equilibrium.

We follow the familiar argument of iterated elimination of strictly dominated strate-
gies (IESDS) to construct an equilibrium. Fix an information structure (S, π), we begin
with the most aggressive strategy where all agents attack regardless of their signals.
We identify a set of no-attack signals S1 such that an individual agent finds attack to
be dominated when receiving a signal in S1. Then we examine an agent’s incentive
when she believes all other agents play a less aggressive strategy: attack if and only if
their signals are outside of S1. We identify another set of no-attack signals S2 such that
an agent finds it sub-optimal to attack when receiving signals in S2. Since agents’ ac-
tions are strategic complementary, the best response to a less aggressive strategy must
be less aggressive, making S2 ⊇ S1. This iteration proceeds further for S3, S4 · · · . As k
goes to infinity, we obtain the maximal set of no-attack signals S∗ = limn→∞ Sn ⊆ S. In
doing so, we construct an equilibrium where an agent attacks if and only if his signal
lies in S \ S∗.

The equilibrium probability of the status quo being overthrown is unique because
we solve for the designer’s worst equilibrium. But there may be a multiplicity in
the set of non-attack signals. We further show there is a unique equilibrium. Note
that one cannot apply the standard iterated dominance argument (Morris and Shin
1998) to prove the uniqueness. This is because we allow for an arbitrary information
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structure, and so there may not be signals serving as take-offs for the iterated domi-
nation for both actions. The uniqueness is indeed driven by our equilibrium selection
rule. Suppose two distinct equilibria with different sets of no-attack signals S∗ and
S∗∗. Since two equilibria induce an identical probability of regime changes, both S∗

and S∗∗ must contain some exclusive signals respectively. We show that there must
be another equilibrium where agents play weakly more aggressive than the following
strategy: attack if and only if receiving signals from S \ (S∗ ∩ S∗∗). This is, once again,
due to the strategic complementarity: a more aggressive strategy leads to a more ag-
gressive best response. However, this equilibrium induces a strictly larger probability
of regime change, which leads to a contradiction.

3.1 Main Result

Our main result is the characterization of the optimal information structure, which
maximizes the probability of survival of the status quo. First, we introduce a class of
information structures.

Definition 1. An information structure (S, π) is a local obfuscator if

1. there is a non-empty subset of the state space (θ′, θ̄′] being partitioned into a sequence of
intervals {(θk+1, θk]}∞

k=0 where θ0 = θ̄′, and limk→∞ θk = θ′,

2. the signal space S is such that {sk}∞
k=1 ⊂ S, and

3. the state-dependent distribution π is such that
π(s1|θ) = 1 if θ ∈ (θ1, θ0]

π(sk+1|θ) + π(sk|θ) = 1 if θ ∈ (θk+1, θk], ∀k > 1

π(sk|θ) = 0, ∀k = 1, 2, ... if θ 6∈ (θ′, θ̄′]

.

In other words, if an information structure locally obfuscates agents, a set of ad-
jacent states is categorized into a number of intervals, each of which corresponds to
a unique signal. We interpret interval (θk+1, θk] as the face value of signal sk+1. When
the state is (θk+1, θk], an agent receives either signal sk+1 or a slightly elevated signal, sk.
Figure 1 visualizes an information structure that exhibits local obfuscation.

We refer to the obfuscation induced by the aforementioned information structure
as local for two reasons. First, an agent can never distinguish states that belong to the
same interval. Second, when an agent is misinformed, she receives an elevated signal
corresponding to the interval just above the true one. The possibility of being locally
obfuscated makes the agent skeptical. When receiving signal sk, instead of taking
the signal at face value, the agent believes that the true state is in either (θk+1, θk] or
(θk, θk−1], and her posterior belief is derived by Bayes’ rule. Moreover, the obfuscation
creates information asymmetry and higher-order uncertainty among agents. An agent
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Figure 1: Illustration of local obfuscator. The horizontal axis represents states and the vertical axis
represents signals and their face values. We use differential shades to distinguish information sets
following different signals. When the state θ ∈ (θ1, θ0], every agent is truly informed by signal s1 whose
face value coincides with the interval containing the state. When θ ∈ (θ2, θ1], some agents receive signal
s2, but others receive signal elevated s1. Similarly, when θ ∈ (θk+1, θk], some agents are receive signal
sk+1, but others receive the elevated signal sk.

who receives signal sk is uncertain not only about the interval that contains the true
state but also about the signals received by other agents, making the coordination
harder. The information designer can manage agents’ posterior beliefs about other
agents’ signals, beliefs and therefore action profiles by manipulating the information
structure.

We are ready to present our main result.

Theorem 1. A local obfuscator (S, π∗) is an optimal information structure if

1. the sequence {θk}∞
k=0 is such that θ0 = θ̄, θ1 = 1, θ2 solves

c
∫ θ̄

1
f (θ)dθ = (1− c)

∫ 1

θ2

(1− θ) f (θ)dθ, (1)

and θk is recursively solved by

c
∫ θk−2

θk−1

θ f (θ)dθ = (1− c)
∫ θk−1

θk

(1− θ) f (θ)dθ, (2)

for k = 3, 4, ..., and limk→∞ θk = θ∗ which solves

c
∫ θ̄

1
f (θ)dθ +

∫ 1

θ∗
(θ − 1 + c) f (θ)dθ = 0, (3)

2. the signal space is given by S = {sk}∞
k=1 ∪ {sa}, and
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3. the state-dependent distribution over S is such that
π∗(s1|θ) = 1 if θ ∈ (θ1, θ0]

π∗(sk+1|θ) = 1− π∗(sk|θ) = θ if θ ∈ (θk+1, θk] ∩Θ, ∀k > 1

π∗(sa|θ) = 1 if θ ∈ [θ, θ∗] ∩Θ

.

Given (S, π∗), an agent attacks if and only if receiving signal sa, and the status quo sur-
vives if and only if θ ∈ (θ∗, θ̄] ∩Θ.

Theorem 1 says that there is an optimal information structure that exhibits local
obfuscation. In other words, to maintain the status quo, the information designer
needs only to slightly exaggerate the true state to some agents. The equilibrium regime
status is fully determined by θ∗, which is pinned down by equation (3) whenever it has
a solution. If equation (3) has no solution, the status quo survives for sure; otherwise,
the regime status is state-dependent. When θ ≤ θ∗, every agent receives signal sa and
attacks, and the status quo collapses. When θ > θ∗, agents are locally obfuscated and
the status quo survives. Given the state θ ∈ (θk+1, θk] for some k > 1, the proportion
of agents being deceived by an elevated signal sk is 1− θ, which decreases in θ. Hence,
the information designer is more desperate to send elevated signals to more agents
when the strength of the status quo becomes weaker. The optimal local obfuscator
has a global impact. First, when θ > θ∗, it collapses all agents’ attack by sending
disinformation to a proportion of agents only. Second, it suppresses agents’ attack in
a large set of states through obfuscating nearby states.

For the sake of simplicity in notation, we will henceforth suppress the signal space
S and refer to the optimal local obfuscator as π∗. The rest of this section is devoted to
heuristically explaining the optimality of π∗.

The equilibrium outcome under π∗. We begin with an agent who receives signal s1.
Given her knowledge about π∗, she infers that the true state θ is either in (θ1, θ0] or
in (θ2, θ1]. If θ ∈ (θ1, θ0], the status quo survives regardless of the agents’ coordinated
action, making attack strictly sub-optimal. If θ ∈ (θ2, θ1], the regime changes only if a
sufficiently large amount of agents attack. Since θ2 balances equation (1), given s1, the
conditional expected benefit of attack does not exceed the cost even if all other agents
attack for sure. Consequently, the agent does not attack.

Leveraging by s1 being sent when θ > θ1, the information designer creates a se-
quence of signals s2, s3, .... that prevent agents from attacking in a large set of weaker
states. To see it, we apply mathematical induction. Suppose that for every k, agent i
does not attack when receiving signals s1, s2, ..., sk−1. If agent i’s signal is sk, she be-
lieves that the state is either in θ ∈ (θk, θk−1] or in θ ∈ (θk+1, θk]. In the former event,
the measure of agents who also receive signal sk is θ, and others receive signal sk−1. By
the induction hypothesis, agents who receive sk−1 do not attack. Thus, in this event,
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the status quo survives even if every agent who receives signal sk attacks, making it
strictly sub-optimal to attack. Moreover, by equation (2), the posterior belief that the
true state is in (θk, θk−1] is c; thus, even if every agent receiving sk attacks, the proba-
bility of winning still cannot justify the cost of attack. Consequently, agent i does not
attack as well.

As a result, if θ ∈ (θ∗, θ̄], agents receive signals s1, s2, .... and do not attack, and so
the status quo survives. When they receive sa, it is common knowledge that the state
is in [θ, θ∗], so all agents attack, and the status quo is overthrown.

The Optimality of π∗. The optimal information structure indeed coincides with the
one described in Figure 1. To explain why this is always the case, we have developed
a “credit-discredit” system to describe the hierarchy of endogenously induced beliefs
among the agents. In the process of IESDS that determines the agent equilibrium,
whenever a state θ will certainly survive given the agents’ current maximal rational
coordination on attack, we say that θ can create credit by sending a self-identifying
signal, in the sense of allowing for some weaker state θ′ to survive by also sending that
signal (possibly with a probability). Conversely, we say that θ′ now creates discredit
because, by mimicking θ, it weakens an agent’s incentive to refrain from attacking the
status quo.

We illustrate how the system works by a straightforward example. For any infor-
mation structure, the credit created in the first round of IESDS is identical, which stems
from a signal s sent by the invincible states (1, θ̄]. Now consider state θ = 0.9, and sup-
pose that it sends s to 20% of agents and a different signal s′ to the remaining 80%.
Clearly, the 20% will refrain from attack given s in fear of facing an invincible state,
while the 80%, realizing this, will not attack given s′ either because they expect a sure
defeat. Hence θ = 0.9 creates discredit by sending s, survives, and meanwhile creates
credit by sending s′; some other states may then create discredit by sending s′, survive,
and create new credit in an analogous manner. Note that the standard obfuscation al-
location — for instance in an information design using public announcements — ter-
minates after the first round of IESDS, while our iterative construction may continue
given a carefully designed information structure. This marks an important difference
made by allowing discriminatory signals — the leveraged subset not only consumes
credit but also creates credit for subsequent rounds of IESDS, and even more states
may be saved along the process.

The credit-discredit system leads to an important property of the optimal informa-
tion structure. Consider an arbitrary information structure and an arbitrary round of
IESDS, at the beginning of which a certain amount of (net) credit, leftover from all
previous rounds, is available at the information designer’s disposal. The information
designer’s problem is then to select a subset of currently still vulnerable states to ex-
ploit the existing credit via creating discredit and thus survive, and at the same time
create new credit on their own. Note that for any state with strength θ < 1 to be in-
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θ̄1θ1θ2

· · ·

θ∗

Θ1Θ2Θ3

θ̄1θ′θ∗

Θ1Θ′3Θ′2 · · · · · ·

Figure 2: The upper panel corresponds to IESDS for the optimal local obfuscator. Denote Θ1 = (1, θ̄]
and Θk as the set of states being leveraged in the k + 1th round of IESDS. As k→ ∞, every > θ∗ state is
leveraged. In the lower panel, the procedure is similar except in the first round. Θ′2 = (θ∗, θ′] where θ′ is

chosen to balance the credit constraint, c
∫ θ̄

1 f (θ)dθ = (1− c)
∫ θ′

θ∗
(1− θ) f (θ)dθ. Obviously, the resulting

measure of Θ′2 is less than Θ2. The choice of Θ′2 further tightens the credit constraints in subsequent
rounds, i.e.

∫
Θ′k

θd f (θ) <
∫

Θk
θd f (θ), making the measure of Θ′k+1 less than Θk+1 for k = 3, 4, 5...

cluded in this round, it surely survives from attack as long as it sends a self-identifying
signal (credit) to no more than a θ fraction of the agents, while the rest 1− θ fraction of
agents receive some signal mimicking a stronger state from the previous round (dis-
credit). This argument reveals a nice duality: on the one hand, the maximum measure
of credit it can offer is exactly θ, which is increasing in θ; on the other hand, the mini-
mum measure of discredit it needs to create for survival is 1− θ, which is decreasing
in θ. In other words, the information designer’s conditional optimal choice — which
maximizes the additional states that can be saved after this round — is to select the
highest states possible. We thus obtain a recursive characterization of the uncondi-
tional optimum, summarized by (1) and (2) where the right-hand sides of equations
correspond to the “credit production” in the kth round, while the left-hand sides cor-
respond to the “credit consumption.” It then implies that at optimum the surviving
states form one unique interval (θ∗, θ̄]. Figure 2 demonstrates the optimality to lever-
age states monotonically in IESDS.

By this property, we thus obtain an explicit upper bound for the status quo’s sur-
vival probability, which also identifies a lower bound for a surviving state at optimum,
by a straightforward necessary condition which leads to (3) at optimum:∫ θ̄

1 f (θ)dθ +
∫ 1

θ∗ θ f (θ)dθ∫ 1
θ∗(1− θ) f (θ)dθ

≥ 1− c
c

.

This inequality implies that the ratio between the total measures of credit and discredit
created by (θ∗, θ̄] must be at least 1−c

c . Intuitively, a sufficiently large proportion of
credit in the set of no-attack signals need to be provided, to hold an agent at least
indifferent between attacking and not.

Finally, we verify that π∗ achieves exactly the maximum survival probability of
the status quo by direct calculation. This can be easily seen by summing up (1) and (2)
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over k to arrive at (3) at the limit. In π∗, the ratio between credit and discredit in every
round of IESDS is kept at precisely 1−c

c , which automatically preserves the same ratio
between the total measures.

The necessity of multiple signals. Although the optimal information structure essen-
tially produces a set of attack signals and another set of no-attack signals, the maxi-
mum survival probability of the status quo cannot be reached by pooling all signals
into binary recommendation signals. To see the logic, first notice that the classic rev-
elation principle/Bayes-correlated-equilibrium approach (See Bergemann and Morris
(2016) and Taneva (2019)) does not apply if one focuses on the information designer’s
worst equilibrium. More importantly, the multiple (and possibly infinite) rounds of
IESDS are necessary to maximize the status quo’s survival probability. The binary
recommendation is at best equivalent to the first round of IESDS under the optimal
information structure.

3.2 Comparative Statics

In this section, we take a closer look at the optimal local obfuscator π∗. Recall that
in the construction of an optimal local obfuscator, the subset of invincible states (1, θ̄]

is critical. When the state lies in this interval, no attack is a strictly dominant strat-
egy. The local domination in this subset serves as a take-off to construct a sequence of
signals extending the suppression of agents’ coordination to lower states. This ripple
effect leveraged by invincible states naturally depends on two primitives, the cost of
attack, c and the likelihood that attack being dominated, F(1). In this section, we con-
duct comparative static analysis on these two primitives and examine the advantage
of local obfuscation relative to public propaganda.

Public Signals. As a benchmark, we first derive the optimal public information struc-
ture, i.e., for every state θ, signals received by any two agents i, j must be identical.
Straightforwardly, it is optimal to set the signal space to be binary, S = {sa, sn}, and
broadcast an attack signal sa if θ ≤ θ† and a no-attack signal sn otherwise for some
cutoff θ† solving

c =
F(1)− F(θ†)

1− F(θ†)
. (4)

The right-hand side of equation (4) is an agent’s expected benefit if she attacks given
that θ > θ† and all other agents attack. Given the no-attack signal sn, the agent believes
that θ > θ†, and finds not to attack to be weakly dominant. This is because when
θ ∈ (1, θ̄], attack is a strictly dominated strategy. Obfuscating states on (θ†, θ̄] makes
attack an unwise choice given sn.
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θθ 1
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θ∗ θ†

1− c

Figure 3: The comparative statics. The thick blue curve represents the right-hand side of equation (5),
and the thin red curve represents the right-hand side of equation (6). When c increases, the black curve
1− c is shifted down for every θ, and so both θ∗ and θ† decrease.

To ease the discussion of comparative statics, we rewrite equation (4) as

1− c =
1− F(1)
1− F(θ†)

, (5)

which is plotted in Figure 3. Naturally, the cutoff value θ† is decreasing in c. When c ≥
F(1), we have θ† = 0: agents never attack, and the status quo always survives. When
the cost of attack falls, the coordination becomes easier, and the status quo survives
in a smaller set of states. As c → 0, θ† → 1, and the status quo fails whenever θ 6∈
(1, θ̄]. In this case, the leverage caused by the local domination in (1, θ̄] on lower states
vanishes. We can also increase the total measure of the local domination interval (1, θ̄],
and decrease the probability density for each θ ≤ 1 in an arbitrary way to balance the
total probability to be one. By equation (5), the probability that the status quo survives
1− F(θ†) changes proportionally. That is, raising the measure of the local dominance
interval has a constant multiplier effect on maintaining the status quo. Intuitively,
this multiplier effect is stronger when the cost of attack is larger. We summarize the
comparative statics results in the following proposition.

Proposition 2.A. In an optimal public information structure, the ex ante probability that the
status quo survives, 1− F(θ†) has the following properties.

1. It increases in c, converges to 1− F(1) as c→ 0, and equals one if c ≥ F(1).

2. When 1 − F(1) increases, and f (·) decreases arbitrarily and accordingly for θ < 1,
1− F(θ†) increases at a constant rate 1

1−c . When 1− F(1) → 0 and f (·) increases
arbitrarily and accordingly for θ < 1, 1− F(θ†) converges to 0.

It is worth noting that the second statement immediately implies that the status
quo’s survival probability increases in F in the sense of first-order stochastic domi-
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nance, i.e. if the distribution of θ becomes G which first-order stochastic dominates F,
the status quo survives with a higher probability under an optimal public information
structure.

Local Obfuscation. Now we turn to the comparative statics on optimal local obfusca-
tion. Rewrite equation (3) as

1− c =
1− F(1)
1− F(θ∗)

+

∫ 1
θ∗ θ f (θ)dθ

1− F(θ∗)
. (6)

Compared to equation (5), equation (6) has a new term on the right-hand side. It
captures the total benefit of using local obfuscation through a sequence of signals.
Notice that it is simply, E(θ|θ ∈ (θ∗, 1]) the conditional expectation θ ∈ (θ∗, 1], the
states being leveraged by the local dominance interval (1, θ̄].

Once again, the cutoff value θ∗ is depicted in Figure 3. Higher cost of attack makes
the coordination more difficult, and therefore lowers the cutoff state θ∗. Hence, θ∗

decreases in c, and converges to 1 as c→ 0. If

c ≥ F(1)−
∫ 1

θ
θ f (θ)dθ, (7)

the agents never attack and the status quo never fails. Notice that in this case, the
ex ante optimal local obfuscator is also ex post optimal to the designer, so it remains
credible even if the designer has no commitment power.

Equation (6) also suggests that when the dominance interval 1− F(1) increases, the
rate of change of 1− F(θ∗) is no longer constant; in fact, if we allow arbitrary ways
of decreasing the respective probability density for θ ≤ 1, the change is even not nec-
essarily positive. This is because when the change has an ambiguous effect on both
θ∗ and E(θ|θ ∈ (θ∗, 1]). Nevertheless, the monotonicity of survival probability under
first-order stochastic dominance is preserved. Indeed, when the state distribution be-
comes more skewed towards stronger states, more credit and less discredit are created
for every given measure of surviving < 1 states. Thus the information designer may
prevent more states from being attacked by enrolling them into the iterated process.

Under an optimal information structure 1− F(θ∗) is bounded away from 0 even if
the dominance interval converges to measure 0. The intuition is that a non-public in-
formation structure can leverage much more states — those in the dominance interval,
as well as those that survive in the subsequent rounds of IESDS. Note that the states
below but sufficiently close to 1 actually produce more leverage for subsequent states
than consumed from a previous round of IESDS to save them: in particular, every state
θ satisfying θ > 1− c lies in this category. Then no matter how small 1− F(1) is, it
will start the iterated reasoning process that keeps saving lower states, and the process
will never stop before θ < 1− c. Therefore 1− c presents an explicit upper bound for
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θ∗, meaning that as long as θ ∈ [1− c, 1] with a significant probability, the status quo
survives also with a significant probability however small the measure of invincible
states is.

The comparative statics is summarized as follows.

Proposition 2.B. Under an optimal information structure, the ex ante probability that the
status quo survives, 1− F(θ∗) has the following properties.

1. It increases in c, converges to 1− F(1) as c→ 0, and equals one if c ≥ c∗.

2. Suppose that G first-order stochastically dominates F, and let θ∗∗ denote the lower bound
of surviving states under the corresponding optimal local obfuscator given G. We have
1− G(θ∗∗) ≥ 1− F(θ∗).

3. Consider {Fn}n∈N+ (with fn and θ∗n defined correspondingly) such that limn→∞ 1 −
Fn(1) = 0, and suppose that lim infn→∞ fn(θ) > 0 for all θ ∈ Θ̂, for some non-empty
Θ̂ ⊂ [1− c, 1]. Then lim infn→∞ 1− Fn(θ∗n) > 0.

Public vs Private Signals. We are now ready to discuss the advantage of the local
obfuscation compared to the public signal (propaganda). One way to examine the
advantage is to look at F(θ†)− F(θ∗), the measure of the set of states that coordination
is crushed under local obfuscation only.

Proposition 3. The advantage of local obfuscation relative to public propaganda F(θ†) −
F(θ∗) has the following properties:

1. It is non-negative for every c, and strictly positive when c < F(1).

2. It is increasing in c.

3. Suppose that {Fn}n∈N+ (with fn, θ†
n and θ∗n defined correspondingly) satisfy the condi-

tions in Proposition 2.B. Then lim infn→∞ Fn(θ†
n)− Fn(θ∗n) > 0.

Under the optimal public information structure, even fewer states survive than un-
der π∗ after the first round of IESDS. The reason is that the public information struc-
ture inevitably wastes some credit provided by (1, θ̄]. For the sake of argument, con-
sider a hypothetical measure 1 of some state θ < 1. The public information structure
can save θ from a regime change only by designing for it the same signal as some > 1
state, therefore inducing all agents to refrain from attacking. In other words, θ creates
discredit of measure 1 as well. Under π∗, however, θ only mimics some > 1 state to-
wards 1− θ fraction of the agents, reducing the measure of discredit produced to only
1− θ. The remaining measure of θ then leaves room for more < 1 states to fill with their
discredit and survive. Hence as long as the optimal public information structure saves
a proportion of states < 1, π∗ must be strictly preferred by the information designer
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(Property 1). It then follows directly from this argument that the additional survival
probability induced by π∗ over the optimal public information structure in the first
round of IESDS, as well as that in every subsequent round under π∗, is increasing in
c, which leads to Property 2. Note also that both θ† and θ∗ approach 1 as c → 0; that
is, even when non-public information structures are available, an infinitesimal cost
always renders information design futile.

Property 3 highlights a significant difference between public and non-public in-
formation structures in an extreme scenario. Although F(θ†) − F(θ∗) may not be
monotone in 1 − F(1), the probability measure of invincible states, it does remain
bounded away from 0 as the measure gradually becomes negligible. This result im-
plies that using non-public signals indeed bears a unique advantage, which does not
vanish even when the optimal public signal becomes almost ineffective. However
small the measure of invincible states is, it creates a significant ripple effect by the in-
finite rounds of IESDS under π∗. The starkest contrast arises when c > 1−

∫ 1
θ θ f (θ)dθ

and 1 − F(1) → 0: almost no state survives under the optimal public information
structure, but all states survive under optimal local obfuscation!

Another way to understand the advantage of local obfuscation is through the dif-
ferent necessary levels of attacking cost to save the same set of states under different
information structures. Specifically, we can define

c†(θ) ≡ F(1)− F(θ)
1− F(θ)

c∗(θ) ≡ F(1)− F(θ)
1− F(θ)

−
∫ 1

θ θ f (θ)dθ

1− F(θ)

as the corresponding cost thresholds. They represent the lowest cost under which
states [θ, θ̄] survive given the corresponding information structure. Then we measure
the advantage of local obfuscation by c†(θ)− c∗(θ) = E(θ′|θ′ ∈ [θ, 1]) > 0. This equal-
ity means that when the information designer switches from the optimal public infor-
mation structure to the optimal non-public one while holding the status quo’s survival
probability constant, each agent’s attacking cost can at most be allowed to decrease by
E(θ′|θ′ ∈ [θ, 1]), the expected strength of the states being "saved" (as compared to the
> 1 states that always survive).

To interpret the equality, first note that states [θ, 1) only produce discredit under
the optimal public information structure, which accounts for F(1)−F(θ)

1−F(θ) ; the difference
between the cost thresholds thus can be regarded as capturing additional credit cre-
ated in the iterated process under π∗. One may then examine the condition required
for a state with this expected strength, θ̃ = E(θ′|θ′ ∈ [θ, 1]), to survive under π∗ after
its round in the iterated reasoning process. Namely, the ratio of credit created in its
signal must be at least 1− c. We already know that this ratio coincides with its strength
θ̃; therefore an increase in θ̃ allows for a decrease in c, in terms of saving an identical
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set of states, by exactly the same amount.

4 On Optimal Local Obfuscation

Now we turn to the robustness of using the optimal local obfuscator. First, we show
that the unique optimal information structure exhibits local obfuscation when the sig-
nal space is restricted to be finite. Second, we discuss that the optimal local obfuscator
remains optimal even if the designer is allowed to target agents according to their
identities. Finally, we argue that a local obfuscator is robust to perturbation, such as
private communication and private signal of agents, which undermines the full con-
trol of the information structure.

4.1 Restricting Complexity

Theorem 1 not only identifies the unique lower bound of the state where the status
quo can survive at optimum, θ∗, but also provides an intuitive implementation even if
no prior knowledge about θ∗ is available. But it is worth noting that the optimal local
obfuscator is not the only information structure securing the status quo’s survival for
θ > θ∗.

To understand the multiplicity of optimum, recall the “credit-discredit” interpreta-
tion. The optimal local obfuscator not only maximizes the credit production in every
round of IESDS, but also uses stocking credit most economically, i.e. saves the most
states given the credit constraint in each round. Nevertheless, alternative designs may
exist under which the same overall amounts of credit and discredit are created as un-
der the optimal local obfuscator, but different amounts occur in each round of IESDS.
In such a design, the probability of the status quo’s survival after the first k rounds of
IESDS is strictly smaller than in π∗ regardless of k; only as the process of IESDS takes
infinitely many rounds and the marginal production of credit diminishes to zero, the
gap becomes negligible as the procedure forwards.

We give a numerical example below, where c = 1/6, and θ is uniformly distributed
on Θ = [0, 1.1]. We consider a design that differs from π∗ in that it identifies the newly
surviving states in the second round of IESDS from θ∗ upwards instead of from those
in the first round downwards. The result is depicted in Figure 4: after the deviation in
the second round, the probability of status quo’s survival under π′ is always strictly
smaller than under π∗ for any k, but will converge to the same limit as k→ ∞.

The above analysis, together with the intuition of Theorem 1, leads to the next
proposition. The optimal local obfuscator π∗ contains infinitely many signals {sk}
preventing the status quo from attack, making the design very complex. In practice, it
is natural to believe that the information designer is constrained to using finite signals.
Given the restriction on the complexity of the signal space, we show that an optimal
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Figure 4: The horizontal axis represents the round of IESDS, and the vertical axis represents the
cumulative measure of states being leveraged until each round. The thin red curve corresponds to
the optimal local obfuscator π∗, while the thick blue curve corresponds to the alternative information
structure π′. The total measure of states being leveraged under π′ falls behind that under π∗ since the
second round of IESDS, but it eventually starts to catch up. When k = 8, the difference already shrinks
to 0.0003.

information structure must exhibit local obfuscation.

Proposition 4. For n = 2, 3, · · · , let πn denote the following state-dependent signal distribu-
tion: 

πn(s1|θ) = 1 if θ ∈ (θ1, θ0]

πn(sk|θ) = 1− πn(sk−1|θ) = θ if θ ∈ (θk, θk−1] ∩Θ, ∀k = 2, · · · , n− 1

πn(sa|θ) = 1− πn(sn−1|θ) = θ if θ ∈ (θn, θn−1] ∩Θ

πn(sa|θ) = 1 if θ ∈ [θ, θn] ∩Θ

.

where S = {sk}n−1
k=1 ∪ {sa}. Suppose that the information designer is restricted to using S that

contains at most n elements; then either

1. πn is the unique optimal information policy, or

2. under an optimal information policy, no agent ever attacks and the status quo always
survives.

The argument underlying Proposition 4 is centered on maximizing the ripple effect
created by the initial credit from θ ∈ (1, θ̄]. When only finite signals are available, the
agents only go through finite rounds of IESDS. In terms of credit creation, the iterated
reasoning process among agents resembles money creation in the banking system to a
certain extent. Intuitively, a certain amount of credit created in an earlier round proves
more “useful” to the information designer than the same amount of credit in a later
round, because it generates a larger sum of additional credit through the remaining
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rounds. By induction, the optimal information structure must seek to create maximum
possible credit in each round sequentially, which uniquely corresponds to πn.

4.2 Relaxing Determinate Measures and Anonymity

Our main results extend to the following general environment. Let S be a compact
metric space; the information designer’s proposed information structure π is now a
mapping from Θ to ∆(M(S)), where M(S) ⊂ {S[0,1]} is a set of integrable functions
with codomain S. This configuration allows for (1) arbitrary correlation — given mea-
surability across states, agents and signals — among signals and (2) information struc-
tures that target particular agent groups.

With a slight abuse of notation, we adopt the notation π∗ for the local obfuscator
specified in Theorem 1. We show that its optimality is preserved.

Corollary 1. π∗ remains optimal in the above environment.

We leave the proof of this result to the Online Appendix. The main intuition is
based upon an alternative characterization of the information designer’s problem.
Since the information designer aims to maximize the ex-ante probability of the sta-
tus quo’s survival, i.e. the probability measure of the surviving states, we can without
loss of generality re-label each state θ as a multiple replica of itself bearing a total den-
sity of f (θ), each representing the same state under a realized measure distribution of
signals. Given such a distribution, the state either survives or falls with certainty, in
which case we can readily apply the proof of Theorem 1. On a more abstract level,
it is only reasonable that as agents are coordinating on the information designer’s
least preferred equilibrium, introducing no correlation among signals will never hurt.
Therefore, compared to the simplest i.i.d. information structure, the ability to target
specific agents or to create arbitrary correlation yields no extra leverage for the infor-
mation designer.

4.3 Exogenous Private Signals

A key distinction between our work and the literature of information design in coordi-
nation games is that the latter often assumes a structure of exogenous private signals
among agents, so that heterogeneous private beliefs exist even without the designer’s
input. In our paper, the designer is interpreted as an informational autocratic, and
agents are interpreted as citizens. In modern age, it is unrealistic to think that citizens
have zero access to alternative news sources. It is therefore reasonable to consider
the robustness of the optimal local obfuscator when agents receive exogenous private
signals.

Needless to say, when agents’ private signals are sufficiently informative, the de-
signer’s information manipulation will become fruitless. Here we provide a sketched
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argument that introducing not-very-informative exogenous private signals does not
remove the optimality of local obfuscation. A general and formal analysis requires
committing to specific a private information structure, which is left for future research.

Informed Elites. One of the simplest but meaningful ways of imposing exogenous
private signals is to assume that a fraction ∆ > 0 of agents, either randomly or de-
terministically selected, knows the true state with certainty. In applications, these
truth-knowing agents can be regarded as a group of “informed elite” as in Guriev and
Treisman (2019). Our Theorem 1 can be directly applied to characterize the optimal
information structure, with the minor alteration that every < 1 state above θ∗ (which
is endogenously determined) sends an elevated signal with probability 1−θ

1−∆ instead of
1− θ. It is easy to verify that θ∗ is increasing in ∆; thus a large number of informed
elites is not a good news to the informational autocratic.

General Specifications. An environment with more general exogenous private sig-
nals bears similar essence in logic. With potentially heterogeneous private signals, a
fraction of agents will have better or more optimistic (in the sense that θ is more likely
to be low) information about θ and thus become harder to discourage from attacking
when θ < 1. Our iterated credit-discredit system remains valid, but the designer has
to deliberately shrink the range of θ in each round of IESDS and at the same time make
those θ send an elevated signal more often, to once again guarantee that there is never
a sufficient measure of agents who may coordinate on attacking. Of course, additional
complication arises when the distribution of exogenous signals imposes implicit and
non-standard constraints on credit creation in the iterated process, which may render
the characterization of optimum less tractable. See Inostroza and Pavan (2018) for a
discussion on information design with normally distributed exogenous signals.

4.4 Private Communication

Our final remark regards the robustness of local obfuscation when the designer cannot
fully control the information structure. In the multi-agent information design settings,
it is well known that using private signals can strictly improve the persuasion outcome
as discussed in the introduction. It is often criticized that private communication of
agents makes it impossible for the designer to perfectly differentiate agents’ informa-
tion in a significant amount. It is worth pointing out that our information structure
is robust to private communication: collapsing local obfuscation requires a large pro-
portion of agents to exchange a substantial amount of information to resolve both
fundamental and strategic uncertainty.

To fix the idea, we use a stylized model extension to heuristically illustrate how the
main economics of local obfuscation is preserved under limited private communica-
tion. The formal analysis is similar to the baseline model, so it is omitted. Suppose
that, after receiving the signal sent by the designer, each agent is randomly paired
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with another agent, with whom she shares her signal. Under local obfuscation, this
implies that an agent will end up in one of three possible information sets: two iden-
tical low signals that induce a optimistic belief; two identical high signals that induce
a pessimistic belief; or two different signals that reveal the true state. To maintain the
iterated reasoning process produced by local obfuscation as before, the designer only
needs to appropriately increase the probability of sending an elevated signal by each
< 1 state – and decrease the range of states that do so – in every round of IESDS, so
that enough pessimistic agents will refrain from attacking. In this way, even a truth-
knowing agent will not attack because she realizes that the fraction of peers that can
possibly coordinate is never sufficient.

The optimal information structure in this setting remains an open question, as com-
munication makes it potentially worthwhile for some state to send more than two sig-
nals. However, on the one hand, our above argument suggests that if the probability
of each agent meeting another is arbitrarily small, the designer can always use an ad-
justed local obfuscator to reach a survival probability arbitrarily close to the one at
optimum without communication. On the other hand, if each agent can share her in-
formation with more and more peers, it becomes harder and harder for a < 1 state to
create credit through an iterated reasoning process. At the limit, if an agent meets a
positive measure of other agents, common knowledge on the signal distribution arises.
The optimal information structure then coincides with the optimal public propaganda.

To summarize, as long as the private communication among agents is limited, a
local obfuscator is virtually optimal. In our opinion, the private information exchange
is insufficient to overturn local obfuscation in many political economy settings. The
reasons are twofold.

Indistinguishable nearby states. When the obfuscation is local, only signals repre-
senting nearby states are sent simultaneously. It is natural to believe that distinguish-
ing nearby states is more difficult/costly to the agent than distant states. (See Hébert
and Woodford (2017), Pomatto et al. (2018), Morris and Yang (2019), and Guo and
Shmaya (2019) for formal discussion.) Thus, a slightly exaggerated signal is unlikely
to be detected even if agents are allowed to privately verify the signals through a com-
munication or private signals. To fully address this issue is beyond the scope of this
paper; we therefore leave it for future research.

Echo Chamber. Second, people are more likely to communicate with those they in-
teract with, which in turn creates “echo chambers” that prevent people from being
exposed to information that contradicts their preexisting beliefs (see Levy and Razin
(2018), Lipnowski and Sadler (2019), and Li and Tan (2019)). In our model, imagine
that agents are divided into several chambers, and information exchange is allowed
only within a chamber.10 Since agents from the same chamber tend to share polit-

10In practice, information exchange between people with different political views is rare, hard to
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ical views and be exposed to similar information sources, it is realistic to allow the
designer to send target signals based on agents’ chambers. Some randomly selected
chambers receive the true signal and others receive the elevated signal. The designer
is restricted to sending identical signal to agents from the same chamber, and so the
maximum survival probability of the regime cannot be achieved, but the structure of
local obfuscation remains.

5 Conclusion
Our analysis has shown that when the information designer has extensive power in
information design, in particular when it can endogenously determine the structure
of noise in the agents’ information, the optimal persuasion scheme takes a simple
and intuitive form. The information designer randomizes between honesty and de-
ceit, which takes the particular form of local obfuscation. We believe that our stylized
framework can be enriched to build a research agenda on many related topics, in-
cluding competitive information designers, dynamic persuasion and communication
among agents.

A Appendix: Proofs of Main Results

A.1 Proof of Proposition 1

We prove the proposition through a number of Lemmas. We begin with an order on
the strategy space.

Definition 2. For i’s two strategies ai and a′i, we denote that ai ≥ a′i if ai(s) ≥ a′i(s) for every
s ∈ S, and that ai > a′i if ai(s) ≥ a′i(s) for every s ∈ S and ai(s) > a′i(s) for some s ∈ S. We
say ai is more aggressive than a′i.

The following Lemma regards i’s best response given s. It is an immediate conse-
quence of strategic complementarity among agents’ actions. It says that when every
other agents’ strategies become more aggressive, an agent’s best response is either un-
changed or more aggressive.

Lemma 1. Consider two strategy profiles of agents other than i, a−i and a′−i. Suppose that
aj ≥ a′j for every j 6= i, and that aj > a′j for all j in a subset of [0, 1] \ {i} with positive
measure. If it is optimal for agent i to attack given s ∈ S and a′−i, it is also optimal to attack
given s and a−i. Similarly, if it is optimal for agent i not to attack given s and a−i, it is also
optimal not to attack given s and a′−i.

motivate, and sometimes counter-productive. See Bail et al. (2018) for a field experiment that shows
exposing people to opposing views on social media only increases political polarization.

23



Proof. We prove the first part of the lemma. The proof of the second part is almost
identical and therefore omitted. Fix s ∈ S, the signal of agent i. Suppose that it is
optimal for agent 1 to attack given a′−i and signal s, and suppose that aj ≥ a′j for every
j 6= i, and that aj > a′j for all j in a subset of [0, 1] \ {i}with positive measure. We must
have

c <
∫

Θ

(
f (θ)π(s|θ)∫

Θ f (θ′)π(s|θ′)dθ′
1{θ <

∫
[0,1]\{i}

∫
S

a′j(v)π(v|θ)dvdj}
)

dθ

≤
∫

Θ

(
f (θ)π(s|θ)∫

Θ f (θ′)π(s|θ′)dθ′
1{θ <

∫
[0,1]\{i}

∫
S

aj(v)π(v|θ)dvdj}
)

dθ

where the first inequality holds because of the optimality of attack given s and a′−i,
and the second inequality holds because aj ≥ a′j for every j 6= i, and that aj > a′j for
all j in a subset of [0, 1] \ {i} with positive measure. Thus, agent i finds it optimal to
attack given signal s and a−i.

Now we are ready to address the equilibrium existence.

Lemma 2. For any (S, π), there exists an equilibrium.

Proof. Fix (S, π), we construct an equilibrium through iterated elimination of strictly
dominated strategies (IESDS). We begin with the strategy profile that everyone attacks,
denoted as a0

i (s) ≡ 1 for every i, and s ∈ S. For every i, define S1 ⊆ S as the set of
signal s such that

∫
Θ

f (θ)π(s|θ)∫
Θ f (θ′)π(s|θ′)dθ′

1{θ <
∫
[0,1]

∫
S

a0
j (v)π(v|θ)dvdj}dθ ≤ c. (8)

That is, if agent i receives signal s ∈ S1, he weakly prefers not to attack even if all other
agents attack for certain. Define

a1
i (s) =

0 if s ∈ S1

1 otherwise.

which is less aggressive than a0
i . By Lemma 1, an agent i weakly prefers not to attack

if all other agents attack if and only if they receive signals in S1.
For k = 2, 3, · · · , define Sk ⊆ S as the set of signal s such that

∫
Θ

f (θ)π(s|θ)∫
Θ f (θ′)π(s|θ′)dθ′

1{θ <
∫
[0,1]

∫
S

ak−1
j (v)π(v|θ)dvdj}dθ ≤ c.

and define

ak
i (s) =

0 if s ∈ Sk

1 otherwise.
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Notice that ak
i becomes less aggressive as k increases. By Lemma 1, S ⊇ Sk ⊇ Sk−1 for

every k. At the limit as k→ ∞, the set S∗ = limk→∞ Sk exists, and S∗ ⊆ S. Also, define:

a∗i (s) =

0 if s ∈ S∗

1 otherwise
(9)

for each agent i. Notice that for an arbitrary (S, π), S1 may be empty. In that case,
Sk, S∗ = ∅.

Next we show that the strategy profile specified in (9) is indeed an equilibrium.
First, by the construction of S∗, an agent prefers attacking when receiving every sig-
nal in S\S∗ given other agents follow the strategy specified in (9). Second, we show
that for any non-empty S∗, given that the other agents follow the strategy in (9), an
individual agent i strictly prefers not attacking for every signal in S∗. The proof is
straightforward. Pick any s ∈ S∗, there exists a unique k such that s ∈ Sk\Sk−1. By the
definition of Sk, given that the other agents j 6= i follow ak−1

j and do not attack if and
only if receiving signals in Sk−1, an individual agent prefers not attacking when receiv-
ing signals in Sk\S̄k−1. Then by Lemma 1, if other agents j 6= i follow a less aggressive
strategy a∗j < ak−1

j and do not attack if and only if receiving signals in S∗ ⊇ Sk−1, an
agent must prefer not attacking when receiving signals in Sk\Sk−1. Thus, for every
s ∈ S∗, a∗i (s) = 0. Hence, we have the desired result.

The definitions above guarantee a unique series of {Sk} and a unique S∗. In what
follows, we show that a∗i (s) is the unique equilibrium as well.

Lemma 3. For any (S, π), there is a unique equilibrium.

Proof. We first introduce a useful function form representing the agent’s strategy. De-
fine the expected measure of agents who attack in state θ as

Aθ =
∫

S
ai(v)π(v|θ)ds, ∀θ ∈ Θ.

Pick any two agents i, j, in every equilibrium, the expected payoff of attacking when
receiving signal s is

∫
Θ

f (θ)π(s|θ)∫
Θ f (θ′)π(s|θ′)dθ′

1{θ < Aθ}dθ − c,

which is invariant to the identity of the agent. Thus, every equilibrium strategy must
be symmetric, i.e. for every s, ai(s) = aj(s) = a(s), which takes value either 0 or 1. For
the sake of contradiction, suppose that for (S, π), there are two distinct equilibria a,
a′. Let {s|a(s) = 0} denote the set of signals the agents do not attack in equilibrium a
and {s|a′(s) = 0} denote the set of signals the agents do not attack in equilibrium a′.
By the hypothesis that a and a′ are distinct equilibria, {s|a(s) = 0} 6= {s|a′(s) = 0}.
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Moreover, they induce an identical probability of a regime being overthrown, so each
set must contain some exclusive signals. Consider the following strategy a′′ defined
as follows:

a′′(s) =

0 if s ∈ {s|a(s) = 0} ∩ {s|a′(s) = 0}
1 otherwise

which is strictly more aggressive than a and a′. By Lemma 1, an individual agent i
receiving a signal in S\({s|a(s) = 0} ∩ {s|a′(s) = 0}) prefers attacking if every other
agent is adopting strategy a′′. Note that an equilibrium always exists, thus there must
exist an equilibrium where the agents play at least as aggressively as a′′. In such a
case the regime changes with a greater probability than both in a and in a′, which is a
contradiction.

The combination of Lemmas 1-3 yields Proposition 1.

A.2 Proof of Theorem 1

Step 1. We define two series which will be useful in the following analysis. Given any in-
formation policy, these series are identified through IESDS; and they characterize the agents’
iterative reasoning in coordination. Series {Sk}∞

k=1 is drawn from the proof of Proposition 1; it
contains the signal sets which the agents refrain from attacking after the kth round of IESDS.
Series {Tk}∞

k=1 satisfies the following condition: ∪k
n=1Tn contains the states that survive before

the kth round of IESDS.

Define state set T1 = (1, θ̄]. By the definition of S1, for every s ∈ S1, s induces the
following posterior: the probability that the true state is in T1 is larger than 1− c, i.e.

Pr(θ ∈ T1|s) ≥ 1− c, ∀s ∈ S1.

Next, we recursively define Tk as the set of states θ where more than 1− θ measure of
agents receive signals in Sk−1 , i.e.

Tk ≡ {θ ∈ Θ :
∫

s∈Sk−1

π(s|θ)ds > 1− θ}

for every k = 2, 3, ... Then, by the definition of Sk, for every s ∈ Sk, s induces the
following posterior: the probability that the true state is in ∪k

n=1Tn is larger than 1− c,
i.e.

Pr(θ ∈ ∪k
n=1Tn|s) ≥ 1− c, ∀s ∈ Sk.

Finally, denote
T∗ = ∪∞

k=1Tk.

Note that for every k, Sk, S∗, Tk, and T∗ are π specific, and we use Sk|π, S∗|π, Tk|π,
and T∗|π to denote the corresponding sets under information policy when necessary.
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Step 2. We prove that a necessary and sufficient condition for the regime to survive is θ ∈ T∗.

We first show the sufficiency. If θ ∈ T∗, there exists k such that θ ∈ Tk and θ /∈ Tl

for l = 1, 2, ..., k− 1. We show that the regime survives for any k = 1, 2, ... Suppose the
agents coordinate on attacking if their signals are in S; then by the definition of T1 and
S1, an individual agent whose signal is in S1 would prefer to deviate to not attacking.
By the rule of coordination, no agent shall attack if her signal is in S1, and every θ ∈ T1

always survives under information policy π(·|θ). By a similar argument, suppose the
agents coordinate on attacking if their signals are in S\S1; then an individual agent
whose signal is in S2 would prefer to deviate to not attacking, and every θ ∈ T1 ∪ T2

always survives. The rest of the proof follows by mathematical induction.
We prove the necessity by contrapositive. First, by the proof of Proposition 1, every

agent shall attack if and only if her signal realization is not in S∗. Then by the definition
of T∗, for every state x not in T∗, the designer sends a signal in S∗ with probability less
than 1− x; otherwise x is in T∗. Thus, every state x not in T∗ is attacked by a mass
greater than x and eventually fails. This completes the proof of the necessity.

Step 3. We identify an upper bound of the ex ante probability that the regime survives,∫
T∗ f (θ)dθ.

Fix any information structure (S, π), and define a function T : Θ → N such that
for every θ ∈ T∗, we have θ ∈ ∪T(θ)

n=1 Tn\ ∪T(θ)−1
n=1 Tn. By the definition of T(·), T(θ) is

unique for every θ. Intuitively, for every θ ∈ T∗, T(θ) means that θ survives after and
only after T(θ)− 1 rounds of IESDS.

For k = 1, 2, ..., define "discredit Dk":

Dk =
∫
∪k

n=1Tn\∪k−1
n=1Tn

f (θ)
∫

Sk−1

π(s|θ)dsdθ,

which is the measure of signals in Sk−1 being sent when θ ∈ ∪k
n=1Tn\ ∪k−1

n=1 Tn. Simi-
larly, for k = 1, 2, · · · , p = k + 1, k + 2, · · · , define "credit Ck,p":

Ck,p =
∫
∪k

n=1Tn\∪k−1
n=1Tn

f (θ)
∫

Sp\Sp−1

π(s|θ)dsdθ,

which is the measure of signals in Sp\Sp−1 being sent when θ ∈ ∪k
n=1Tn\ ∪k−1

n=1 Tn.
Intuitively, in each round of the IESDS, to deter a coordinated attack, a signal must
induce a posterior belief that the true state is sufficiently likely to be strong; hence the
chance of defeating it is sufficiently low.

Consider an arbitrary round k. The states that survive after the k − 1th round of
IESDS are ∪k

n=1Tn; these states are considered as the strong states. A strong state dis-
courages the agents from attacking the signals that it sends with positive probability,
increasing the probability that the underlying true state is strong. Analogously, it’s
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like providing "credit" to these signals. The amount of credit a strong state provides
to a signal is the ex-ante probability measure that it sends this signal. Then Ck,p is the
aggregate credit all the states in ∪k

n=1Tn\ ∪k−1
n=1 Tn provide to the signals saved in the

pth round of the IESDS, Sp\Sp−1.
The weak states, however, are the states that still fail after the k − 1th round of

IESDS. A weak state encourages the agents to attack the signals that it sends with
positive probability, decreasing the probability that the underlying true state is strong.
Analogously, it’s like drawing out credit from (or injecting "discredit" to) those signals.
The amount of credit a weak state charges from a signal is the ex-ante probability
measure that it sends this signal. Then Dk+1 is the aggregate discredit all the states in
∪k+1

n=1Tn\ ∪k
n=1 Tn charge from the signals saved in the previous rounds Sk.

In the kth round of the IESDS, to save the states in ∪k+1
n=1Tn\∪k

n=1 Tn, the information
policy charges credit Dk+1 from the signals saved in this and the previous rounds, Sk.
The credit must not be overdrawn (specified later); otherwise those signals become
too weak and the agents shall attack them in previous rounds. In the pth round of the
IESDS, however, these states, ∪k+1

n=1Tn\ ∪k
n=1 Tn, are strong states; they provide credit

Ck+1,p to save the states in ∪p+1
n=1Tn\ ∪p

n=1 Tn. In conclusion, in each round of the IESDS,
the newly saved states "pollute" the strong signals endorsed by the states saved in the
previous rounds; nevertheless it creates spaces for the states saved in the latter rounds
to pollute.

The above intuition leads, for every round k, to two conditions that characterize
an upper bound of the ex-ante probability that the regime survives: first, the credit
must not be overdrawn; second, the states in ∪k+1

n=1Tn\ ∪k
n=1 Tn are saved in the kth

round. Precisely, consider round k. By the definition of T(·) and S(·), for every s ∈ Sk,
an individual agent receiving s shall not attack even if every agent receiving a signal
not in Sk−1 attacks; that is to say, if she attacks, the probability of winning is smaller
than c. Then a necessary condition for Tn to be saved is

c ≥ ∑k+1
m=1 Dm

∑k
m=1 ∑k

p=m Cm,p + ∑k+1
m=1 Dm

⇔ c
k

∑
m=1

k

∑
p=m

Cm,p ≥ (1− c)
k+1

∑
m=1

Dm.

Also, by the definition of T(·) and S(·), for m = 1, 2, · · · , k+ 1, for every θ ∈ ∪m
n=1Tn\∪m−1

n=1
Tn,
∫

Sm−1
π(si|θ)dsi ≥ min{0, 1− θ}; this further implies

∫
Sk\Sm−1

π(si|θ)dsi ≤ max{1, θ}.
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Expanding the above condition yields

c
k

∑
m=1

k

∑
p=m

Cm,p ≥ (1− c)
k+1

∑
m=1

Dm

⇔ c
k

∑
m=1

∫
∪m

n=1Tn\∪m−1
n=1 Tn

f (θ)
∫

Sk\Sm−1

π(s|θ)dsdθ

≥ (1− c)
k

∑
m=1

∫
∪m

n=1Tn\∪m−1
n=1 Tn

f (θ)
∫

Sm
π(s|θ)dsdθ

⇔ c
∫
∪k

n=1Tn
f (θ)

∫
Sk\ST(θ)−1

π(s|θ)dsdθ

≥ (1− c)
∫
∪k+1

n=1Tn
f (θ)

∫
ST(θ)−1

π(s|θ)dsdθ

⇒ c(
∫

T1

f (θ)dθ +
∫
∪k

n=2Tn\T1

θ f (θ)dθ) ≥ (1− c)
∫
∪k

n=1Tn\T1

(1− θ) f (θ)dθ

Next we introduce a lemma that helps us to focus on information policies that
induce a specific form of agent equilibrium. Intuitively, it shows that the information
designer can always construct an information policy π′ that weakly improves upon π

by, loosely speaking, saving the strong states.

Lemma 4. For every information policy π, there exists another information policy π′ such
that T∗|π′ ⊇ (F−1(1−

∫
T∗|π f (θ)dθ), θ̄].

Now we are in the position to identify an upper bound of the ex ante probability
that the regime survives,

∫
T∗ f (θ)dθ. Let θ̃ = F−1(1 −

∫
T∗ f (θ)dθ), by Lemma 4, as

k→ ∞ we have

c(
∫

T1

f (θ)dθ +
∫
∪∞

n=2Tn\T1

θ f (θ)dθ) ≥ (1− c)
∫
∪∞

n=1Tn\T1

(1− θ) f (θ)dθ

⇒ c(
∫ θ̄

1
f (θ)dθ +

∫ 1

θ̃
θ f (θ)dθ)− (1− c)

∫ 1

θ̃
(1− θ) f (θ)dθ ≥ 0

Suppose that π improves and
∫

T∗ f (θ)dθ increases, θ̃ decreases, the left-hand side
of the second inequality above either always increases, or increases at first, then de-
creases. Thus, there exists a unique lower bound of θ̃. If the lower bound is 0, there
exists π such that every state survives; otherwise if the lower bound is strictly larger
than 0, we use θ∗′ to denote this lower bound, and θ∗′ solves

c
∫ θ̄

1
f (θ)dθ +

∫ 1

θ∗′
(θ + c− 1) f (θ)dθ ≥ 0 (10)

It’s straightforward that θ∗′ is unique, and then the upper bound of the ex ante proba-
bility that the regime survives is 1− F(θ∗).
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Step 4. We show that the probability of the status quo’s survival under π∗ exactly equals to
the upper bound we proposed. π∗ is therefore an optimal signal.

As shown in the main text, the equilibrium outcome under π∗ is that every agent
who receives a signal in {sk}∞

k=1 does not attack; as a result, the status quo survives
whenever θ ∈ (θ∗, θ̄]. When receiving sa, it is common knowledge that the state is in
[θ, θ∗], so all agents attack, and the status quo is overthrown. Also, by the definition of
Tk, under π∗, for k = 1, 2, · · · , we have Tk = (θk, θk−1].

Then by (1), (2), and (3)

c

(∫ θ0

θ1

f (θ)dθ +
∞

∑
k=3

∫ θk−2

θk−1

θ f (θ)dθ

)
= (1− c)

∞

∑
k=2

∫ θk−1

θk

(1− θ) f (θ)dθ

c
(∫ θ0

θ1

f (θ)dθ +
∫ θ1

θ∗′
θ f (θ)dθ

)
= (1− c)

∫ θ1

θ∗′
(1− θ) f (θ)dθ

Notably, θ∗ indeed solves (10); as the solution is unique, we have θ∗ = θ∗′. The
measure of

∫
T∗ f (θ)dθ exactly equals the upper bound we proposed; thus θ∗ is optimal.

Lastly, all the steps above assume that not every state survives under π∗. If oth-
erwise, for some k we have θk < θ, then π∗ has already achieved the best outcome
possible and is thus optimal.

A.3 Miscellaneous Proofs

Proof of Lemma 4. Fix any π, construct π′ as follows: as θ̃ decreases from θ̄, for every
θ̃, let ∫

T∗∩(θ̃,θ̄]
f (θ)π(·|θ)dθ ≡

∫ θ̄

F−1(1−
∫

T∗∩(θ̃,θ̄] f (u)du)
f (θ)π′(·|θ)dθ

and ∫
(θ̃,θ̄]\T∗

f (θ)π(·|θ)dθ ≡
∫ F−1(1−

∫
T∗ f (w)dw)

F−1(1−
∫
(θ̃,θ̄]∪T∗ f (v)dv)

f (θ)π′(·|θ)dθ

As f (θ) ≤ 1 for every θ, such a π′ always exists.
Intuitively, fix any π, the states that survive are T∗ and the ex-ante probability that

the regime survives is
∫

T∗|π f (θ)dθ. Under information policy π′, the top
∫

T∗|π f (θ)dθ

states and the states in T∗ switch their signal distributions.
Next we prove that every state in (F−1(1−

∫
T∗|π f (θ)dθ), θ̄] survives under infor-

mation policy π′. Consider any agent i, upon receiving any signal si, under π′, her
posterior belief on the state set (F−1(1−

∫
T∗ f (w)dw, θ̄] ∪ T∗ is the same as under π.

Then consider any second-order infinitely small probability measure that any state
θ ∈ T∗ takes up in the prior under π, there exists a corresponding second-order in-
finitely small probability measure that some state θ′ ∈ (F−1(1−

∫
T∗ f (w)dw, θ̄] takes

up in the prior; θ′ induces exactly the same signal distribution under π′ as what θ in-
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duces under π, and θ′ ≥ θ. Fix θ, any potential coordination that is not self-sustainable
(i.e., some agents shall unilaterally deviate) under π is weakly less likely to success-
fully overthrow a regime of state θ′ under π′; therefore, such a coordination yields
weakly less expected payoff for every agent and is not self-sustainable under π′. Simi-
larly, any coordination plan that fails to overthrow a regime of state θ under π also fails
to overthrow a regime of state θ′ under π′. As θ survives under π, θ′ survives under
π′. Then as every state in T∗ survives under π, every state in (F−1(1−

∫
T∗|π f (θ)dθ), θ̄]

survives under π′.

Proof of Proposition 2.B. The first statement is straightforward.
To prove the second statement, rewrite (3) for F and G to get

c(1− F(θ∗)) =
∫ 1

θ∗
(F(θ)− F(θ∗))dθ

c(1− G(θ∗∗)) =
∫ 1

θ∗∗
(G(θ)− G(θ∗∗))dθ.

Consider θ′ such that G(θ′) = F(θ∗) which implies that θ′ ≥ θ∗ by first-order stochastic
dominance. As G(θ) ≤ F(θ) for all θ, we know that

∫ 1
θ′(G(θ)− G(θ′))dθ ≤

∫ 1
θ∗(F(θ)−

F(θ∗))dθ, i.e. c(1− G(θ′)) ≥
∫ 1

θ′(G(θ)− G(θ′))dθ. As the left-hand side of (3) must be
negative for all θ < θ∗∗ and positive for all θ > θ∗∗, it must be that θ∗∗ ≤ θ′. Therefore
1− G(θ∗∗) ≥ 1− G(θ′) = 1− F(θ∗).

To prove the third statement, observe from (3) that a sufficient condition for 1−
F(θ∗) to be bounded away from 0 is that the measure of θ ∈ [1− c, 1] is bounded away
from 0. This is ensured by f (θ) > 0 for all θ ∈ Θ̂, for some non-empty Θ̂ ⊂ [1− c, 1].
The result thus follows.

Proof of Proposition 3. We first consider increasing c. Note that θ† and θ∗ are charac-
terized by

c(F(θ̄)− F(θ†))− (F(1)− F(θ†)) = 0 (11)

c(F(θ̄)− F(θ∗))− (F(1)− F(θ∗)) +
∫ 1

θ∗
θ f (θ)dθ = 0, (12)

where (12) is a representation of (3). (11)-(12) gives

(1− c)(F(θ†)− F(θ∗)) =
∫ 1

θ∗
θ f (θ)dθ

(1− c)(F(θ†)− F(θ∗)) =
∫ 1

θ∗
θ f (θ)dθ

F(θ†)− F(θ∗) =

∫ 1
θ∗ θ f (θ)dθ

1− c
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It is clear that θ∗ decreases as c increases. Hence F(θ†)− F(θ∗) increases as c increases.
As F(1) → 1, F(θ†) → 1. Then if F(θ∗) → 1 we have

∫ 1
θ∗ θ f (θ)dθ → 1. Then we

require 0 = 1
1−c , contradiction. Thus θ∗ is bounded away from 1.

B Appendix: Proofs of Robustness (For Online Publica-
tion)

Proof of Proposition 4. Suppose that π′n is an optimal policy and π′n is different from
πn. Through the following analysis we assume θk ≥ θ for every k ≤ n.

It’s straightforward that n signal realizations can induce at most n − 1 rounds of
IESDS. Suppose that π′n induces m ≤ n− 1 rounds of IESDS.

For πn, we have

D1|πn = 0, C1,1|πn = θ̄ − 1

D2|πn =
c

1− c
C1,1|πn

D2|πn + D3|πn =
c

1− c
(C2,2|πn + C1,1|πn)

· · ·
n

∑
p=2

Dp|πn =
c

1− c

n

∑
p=2

Cp−1,p−1|πn.

For π′n, we have

D1|π′n = 0

D2π′n ≤ c
1− c

C1,1|π′n

D2|π′n + D3|π′n ≤ c
1− c

(C2,2|π′n + C1,1|π′n + C1,2|π′n)
4

∑
p=2

Dp|π′n ≤ c
1− c

(C3,3|π′n +
3

∑
p=2

C2,p|π′n +
3

∑
p=1

C1,p|π′n)

· · ·
m+1

∑
p=2

Dp|π′n ≤ c
1− c

(Cm,m|π′n +
m

∑
p=m−1

Cm−1,p|π′n + ... +
m

∑
p=1

C1,p|π′n).

If C1,1|π′n < C1,1|πn, then D2|π′n < D2|πn, then C2,2|π′n < C2,2|πn, also we know
C1,2|π′n + C1,1|π′n ≤ C1,1|πn, then D2|π′n + D3|π′n < D2|πn + D3|πn, then C3,3|π′n <

C3,3|πn, · · · following a mathematical induction we have ∑m+1
p=2 Dp|π′n < ∑m+1

p=2 Dp|πn,

as m ≤ n− 1, ∑m+1
p=2 Dp|π′n ≤ ∑n

p=2 Dp|πn.
By the proof of Theorem 1, step 3, under any information policy, the minimum

discredit a state θ that survives charges is 1 − θ. Thus, fix ∑n
p=2 Dp|πn, ∪n

p=1Tn|πn

uniquely maximizes the information designer’s ex ante probability of survival. As
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∑m+1
p=2 Dp|π′n < ∑n

p=2 Dp|πn, the information designer’s ex ante probability of survival
under π′n is strictly smaller than under πn, and we reach a contradiction. Thus, in
every optimal design, C1,1|π′n = C1,1|πn, D2|π′n = D2|πn; then we also have C1,p|π′n =

0 for p = 2, 3, · · · , m.
Similarly, given C1,1|π′n = C1,1|πn, D2|π′n = D2|πn, suppose that C2,2|π′n < C2,2|πn,

then D3|π′n < D3|πn, then C3,3|π′n < C3,3|πn, also we know C2,3|π′n + C2,2|π′n ≤
C2,2|πn, then D3|π′n + D4|π′n < D3|πn + D4|πn, then C4,4|π′n < C4,4|πn, · · · following
a mathematical induction we have ∑m+1

p=3 Dp|π′n < ∑m+1
p=3 Dp|πn ≤ ∑n

p=3 Dp|πn. Note

that we already have D2|π′n = D2|πn, thus we have ∑m+1
p=2 Dp|π′n < ∑n

p=2 Dp|πn, by
the same argument as above, the information designer’s ex ante probability of survival
under π′n is strictly smaller than under πn, and we reach a contradiction. Thus, in ev-
ery optimal design, C2,2|π′n = C2,2|πn, D3|π′n = D3|πn, then we also have C2,p|π′n = 0
for p = 3, 4, · · · , m.

Iterate the above process, by a mathematical induction, we conclude that in every
optimal design, for p = 1, 2, · · · , m, Cp,p|π′n = Cp,p|πn, Dp+1|π′n = Dp+1|πn, and
Cp,q|π′n = Cp,q|πn = 0 for q = p + 1, p + 2, · · · , m.

By the above analysis, in every optimal design π′n, states in T1|π′n send signals in
S1|π′n with probability 100%, and states in Θ\(T1|π′n ∪ T2|π′n) should not send any
signal in S1|π′n with positive probability. We show that if S1 contains more than one
element (denoted by s1), it must not be optimum. First, we construct information
policy π′′n ; under this information policy, the states in Θ\(T1|π′n ∪ T2|π′n) behave the
same as under π′n, the states in T1|π′n ∪ T2|π′n send s1 whenever they should send a
signal in S1 under π′n. It’s straight forward that π′′n uses at least one signal less than π′n
does, and the outcome is the same as π′n. Then we can construct information policy
π′′′n that improves upon π′′n by using one more signal, denoted by s′. Under π′′′n , let the
states in Tn send s′ whenever they should send a signal not in Sn−1 under π′′n , then let
a sufficiently small state set in Θ\(∪m

p=1Tp|π′′n) send s′ with probability 100%, the other
states behave the same as under π′′n . All the states that survive under π′′n still survive
under π′′′n ; and the small state set that sends s′ with probability 100% now survives.
Thus the ex ante probability of survival under π′′′n is strictly larger than under π′′n ;
this contradicts our assumption that π′n is optimum. Thus, states in T1|π′n send s1

with probability 100%, and a state in T2|π′n sends s1 with probability that equals to its
strength.

By similar arguments, in every optimal design, a state in T2|π′n sends one single sig-
nal, s2, with probability that equals to one minus its strength. This iteration proceeds,
and we show that in every optimal design, π′n = πn.

Proof of Corollary 1. Fix any information policy π(·|θ); we define a series T(·) on the
state space and, for every i, a series Si

(·) on the signal space. The idea is similar to
the proof of Proposition 1 and the proof of Theorem 1, with minor modifications as
follows.
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The difference between this specification and Theorem 1 is that now, for each state,
the ex post distribution of signals is not determinate; instead, it can be any distribution
over all possible ex post distributions. Nevertheless, we show that this added degree
of freedom does not increase the maximum of the status quo’s probability of survival,
i.e. the original design remains optimal.

For every i, define Si
0 = ∅ and a0

i (s) ≡ 1. Define Si
1 ⊆ S as the set of states

satisfying the following condition:

∫
Θ

f (θ′)π(s|θ′)∫
Θ f (θ′′)π(s|θ′′)dθ′′

Pr(θ′ <
∫
[0,1]

a0
j (sj)dj|θ = θ′, si = s)dθ′ ≤ c.

Define

a1
i (s) =

{
0 if s ∈ Si

1
1 otherwise.

We then perform an iteration similar to the proof of Proposition 1. For every i and
for k = 2, 3, ...,+∞, we define ak

i , Si
k, Si∗. We omit the proof that {Si∗}i∈[0,1] character-

izes the unique agent equilibrium.
To save notations and to simplify our discussion, we apply the following transfor-

mation on the signal space and, correspondingly, on π. Notice that for any i and any
point-to-point transformation A from S to S, let π′i be an alternative signal such that
for every θ ∈ Θ, s ∈ S, π′i(A(s)|θ) = πi(s|θ), the payoff yielded by π′ = {π′i}i∈[0,1]

is the same as π. Thus, we can always construct a proper transformation A to attain
arbitrary Si

k for every i, k, and the status quo’s ex ante probability of survival is un-
changed. Then, for every π(·|θ), we can always find π′(·|θ) such that āk

i (·) ≡ āk
j (·)

for every k and every i, j ∈ [0, 1], and the status quo’s ex ante probability of survival
under π′(·|θ) is identically equal to its ex ante probability of survival under π(·|θ).

Without loss of generality, from here on, we focus on policies under which āk
i (·) ≡

āk
j (·) for every n and every i, j ∈ [0, 1], then S̄i

k = S̄j
k for every k and every i, j ∈ [0, 1].

To save notations, we still call this policy π(·|θ), and define āk(·) ≡ āk
i (·), Sk = Si

k, for
arbitrary i and for every k.

Next, define type set T0 = ∅ and function f0(θ) on Θ, f0(θ) = 0 for every θ ∈ Θ.
Define type set T1 = (1, θ̄] and function f1(θ) on Θ, f1(θ) = f (θ) for every θ ∈ T1

and f1(θ) = 0 elsewhere.
Define type set T2 as every state x ∈ Θ such that: Pr(

∫
i∈[0,1] Pr(si ∈ Si

1|θ = x)di <
x) > 0; define function f2(θ) on Θ, for every θ, f ′2(θ) = f (θ)Pr(

∫
i∈[0,1] Pr(si ∈ Si

1|θ =

x)di < x).
Define Tk and fk(θ) for k = 3, 4, ... similarly.
Next, we identify an upper bound of the ex ante probability that the regime sur-

vives.
Fix any information policy π(·|θ) that induces a unique agent equilibrium which
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satisfies the above condition, define function T(θ) the same as in the proof of Theorem
1.

For i ∈ [0, 1], k = 1, 2, ..., define "discredit Dk":

Di
k =

∫
Θ
[ fk(θ)− fk−1(θ)]Pr(si ∈ Sk−1|θ)dθ.

For i ∈ [0, 1], k = 1, 2, ..., p = k + 1, k + 2, ..., define "credit Ci
k,p":

Ci
k,p =

∫
Θ
[ fk(θ)− fk−1(θ)]Pr(si ∈ Sp\Sp−1|θ)dθ.

By the definition of T(·) and S(·), for every k, i, c ∑k
m=1 ∑k

p=m Ci
m,p ≥ (1− c)∑k+1

m=1 Di
m.

Also note that for the status quo to survive it must send signals in Sk to a population
greater or equal to 1− θ. Thus, similar to the proof of Theorem 1, for every i, θ

c
∫

Θ
fk(θ)Pr(si ∈ Sk\ST(θ)−1|θ)dθ

≥ (1− c)
∫

Θ
fk+1(θ)Pr(si ∈ ST(θ)−1)dθ

Thus we have

c
∫
[0,1]

∫
Θ

fk(θ)Pr(si ∈ Sk\ST(θ)−1|θ)dθdi

≥ (1− c)
∫
[0,1]

∫
Θ

fk+1(θ)Pr(si ∈ ST(θ)−1|θ)dθdi

⇒ c(
∫

Θ
f1(θ)dθ +

∫
Θ
( fk(θ)− f1(θ))θ f (θ)dθ) ≥

∫
Θ

fk(θ)(1− θ)dθ

Note that Lemma 4 remains valid; the policy maker can still construct an infor-
mation policy that weakly improves upon π by saving the high types. Thus in any
optimum, fk(θ) = f (θ) for θ ∈ Tk and fk(θ) = 0 elsewhere. Following the proof of
Theorem 1, θ∗ satisfies

c(
∫ θ̄

1
f (θ)dθ +

∫ 1

θ∗
θ f (θ)dθ) = (1− c)

∫ 1

θ∗
(1− θ) f (θ)dθ

which is identical to the proof of Theorem 1. Notice that the last condition is irrele-
vant to agent identity i. Thus from here on, the rest of the proof follows the proof of
Theorem 1.
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